

Atlas du potentiel géothermique des aquifères lorrains

Rapport final

BRGM/RP-54987-FR

Juin 2007

Étude réalisée dans le cadre des projets de Service public du BRGM 2006 06ENEB06

B. Bourgine, L. Denis, T. Filhine-Tresarrieu, P. Monnot, D. Nguyen-Thé, C. Robelin

Vérificateur :

Nom : A. Desplan Date : 15/06/07

(Original signé)

Approbateur :

Nom : M. Aguillaume Date : 15/06/07

(Original signé)

Mots clés : aquifère, calcaires du Tithonien, calcaires de l'Oxfordien, calcaires du Dogger, calcaires du Muschelkalk, grès du Trias inférieur, ressource énergétique, pompe à chaleur sur nappe, Lorraine.

En bibliographie, ce rapport sera cité de la façon suivante :

B. Bourgine, L. Denis, T. Filhine-Tresarrieu, P. Monnot, D. Nguyen-Thé, C. Robelin (2007) – Atlas du potentiel géothermique des aquifères lorrains. Rapport BRGM/RP-54987-FR, 83 p., 36 ill., 3 ann.

© BRGM, 2007, ce document ne peut être reproduit en totalité ou en partie sans l'autorisation expresse du BRGM.

Synthèse

'Agence Régionale de l'Environnement en Lorraine, représentant l'Agence de l'Environnement et de la Maîtrise de l'Energie, le Conseil Régional Lorraine, et Electricité de France, a passé une convention avec le BRGM pour qu'il réalise un atlas des ressources géothermales superficielles pour pompes à chaleur (PAC) sur les aquifères lorrains.

Une approche multicritère a été mise en oeuvre pour élaborer l'atlas des ressources énergétiques des principales nappes d'eau souterraines « accessibles » de la région Lorraine. Elle a été rendue possible par la mise en place d'un système d'informations géographiques pour caractériser les nappes des calcaires du Tithonien, des calcaires de l'Oxfordien, des calcaires du Dogger, des calcaires du Muschelkalk, et des grès du Trias inférieur.

Les paramètres qui ont été pris en compte sont variés. Ils reflètent les caractéristiques hydrodynamiques des aquifères et les caractéristiques qualitatives des nappes qui leur sont associées. Pour certains paramètres, et en particulier pour les débits, l'insuffisance des données disponibles, n'a pas permis de faire un tri systématique de celles-ci, ce qui a parfois entraîné des difficultés pour leur traitement.

Un atlas étant par définition constitué de cartes, une attention particulière a été apportée à la réalisation de la cartographie des paramètres, en veillant à toujours suivre une démarche scientifique consistante. La variabilité spatiale des paramètres a donc été étudiée. Pour la majorité des nappes, des krigeages géostatistiques des paramètres ont été faits.

Toutefois, les résultats sur les débits apportés par l'étude ne sont qu'indicatifs. L'atlas est en effet un outil d'aide à la décision sur la géothermie très basse énergie, qui donne des orientations sur les potentialités d'exploitation des nappes. Les points suivants doivent notamment être pris en compte puisqu'ils peuvent limiter les précisions de l'analyse variographique et de la qualité des interpolations :

- les formations carbonatées sont hétérogènes (fissurées voire karstifiées), et les données de débit qui ont été collectées le sont aussi ;
- l'estimation des débits ne tient pas compte des interférences des pompages entre eux.

Ainsi, les résultats de l'interpolation des débits pourraient ne pas être représentatifs de la réalité. En tout état de cause, ces résultats ne sauraient constituer une étude de faisabilité d'un projet.

Par ailleurs, l'existence de zones de restriction d'exploitation ou de travaux (cas des périmètres de protection des captages d'alimentation en eau potable par exemple), et la possibilité pour une nappe d'être en déséquilibre (cas de la nappe des grès du Trias inférieur qui est surexploitée), devront être prises en compte dans un projet.

Ces restrictions d'usage étant mentionnées, le travail effectué a permis d'aboutir à la réalisation d'une carte du potentiel d'exploitation par des pompes à chaleur, pour chacune des cinq nappes. Ces documents ont été normés par la même référence, et présentés selon une échelle de résultats unique, afin qu'ils puissent être comparés. L'atlas permet finalement, lorsque plusieurs nappes coexistent, d'orienter le lecteur vers la ressource en eau souterraine la plus intéressante.

Sommaire

1.	Introduction	9
2.	Cadres géologique et hydrogéologique	11
	2.1. LA GEOLOGIE LORRAINE	11
	2.2. DELIMITATION DES PRINCIPALES FORMATIONS AQUIFERES AFFLEURANTES	12
	2.3. MODELISATION GEOLOGIQUE	17
	2.4. MODULATION DE LA GEOMETRIE PAR LA PIEZOMETRIE	22
	2.5. RAPPEL SUR LES FORAGES D'EAU	23
3.	Caractérisation des aquifères	25
	3.1. ACQUISITION DES DONNEES	25
	3.2. APPROCHE ADOPTEE POUR VALORISER LES DONNEES	26
	3.3. EXEMPLES DE TRAITEMENT DES DONNEES	27 27
	3.3.2. Exemple de la température pour l'Oxfordien	
	3.3.3.Exemple du chlorure pour le Dogger	35
	3.3.4. Exemple du sulfate pour le Muschelkalk	37
	3.3.5. Exemple de la dureté pour le Buntsandstein	38
4.	Potentiel d'exploitation	41
	4.1. PRINCIPE DU CALCUL	41
	4.2. EVALUATION DU POTENTIEL D'EXPLOITATION	42
5.	Conclusion	51
6.	Glossaire	53
7.	Documents utilisés	55

Liste des illustrations

Illustration 1 : Extrait de la carte géologique de la France au millionième.	11
Illustration 2 : Table stratigraphique simplifiée de la Lorraine.	11
Illustration 3 : Coupe Ouest-Est de la bordure orientale du Bassin de Paris.	12
Illustration 4 : Exemples d'assemblage et de découpage des formations géologiques	13
Illustration 5 : Délimitation du toit du réservoir du Tithonien	14
Illustration 6 : Principaux affleurements des aquifères lorrains	15
Illustration 7 : Coupe Ouest-Est des réservoirs aquifères	16
Illustration 8 : Exemple d'analyse des corrélations entre sondages. Altitudes modélisées du toit du Dogger	18
Illustration 9 : Altitudes modélisées des toits des réservoirs	19
Illustration 10 : Incertitudes sur la délimitation du réservoir du Muschelkalk.	20
Illustration 11 : Exemple de variations latérales de faciès rencontrées en Lorraine	21
Illustration 12 : Profondeurs ciblées selon les zones des réservoirs	22
Illustration 13 : Forages d'eau en nappe libre.	23
Illustration 14 : Forage en nappe captive	24
Illustration 15 : Paramètres hydrodynamiques collectées pour l'Oxfordien	25
Illustration 16 : Histogramme des débits disponibles pour le Tithonien et variogramme expérimental obtenu.	28
Illustration 17 : Modèle de variogramme utilisé pour modéliser les débits du Tithonien	28
Illustration 18 : Courbes caractéristiques d'une pompe	29
Illustration 19 : Cavités souterraines inventoriées dans le Sud-Ouest du plateau du Barrois et affectant le Tithonien	30
Illustration 20 : Blocs diagrammes conceptuels de la structure d'un milieu carbonaté	31
Illustration 21 : Carte des débits du Tithonien.	32
Illustration 22 : Etude géostatistique de la température de l'eau dans la nappe de l'Oxfordien	33
Illustration 23 : Résultats des températures interpolées pour l'Oxfordien	34
Illustration 24 : Distribution des concentrations en chlorure et variogrammes pour le Dogger.	35
Illustration 25 : Carte du chlorure dans la nappe du Dogger	36
Illustration 26 : Analyse géostatistique du sulfate en solution dans la nappe du Muschelkalk	37
Illustration 27 : Analyse géostatistique de la dureté des eaux du Buntsandstein	38
Illustration 28 : Cartographie de la dureté des eaux de la nappe des GTI	39
Illustration 29 : Potentiel d'exploitation de la nappe du Tithonien.	43

Illustration 30 : Potentiel d'exploitation de la nappe de l'Oxfordien.	44
Illustration 31 : Potentiel d'exploitation de la nappe du Dogger	45
Illustration 32 : Potentiel d'exploitation de la nappe du Muschelkalk	46
Illustration 33 : Potentiel d'exploitation de la nappe du Buntsandstein	47
Illustration 34 : Deuxième carte du potentiel d'exploitation de la nappe du Buntsandstein (nouvelle échelle de restitution des données)	48
Illustration 35 : Principales nappes alluviales en Lorraine.	49
Illustration 36 : Distribution des potentiels d'exploitation des nappes.	50

Liste des annexes

Annexe 1 : Limites inférieures et supérieures sectorisées des aquifères du Tithonien, de l'Oxfordien, du Dogger, du Muschelkalk et du Trias inférieur	59
Annexe 2 : Liste de toutes les formations géologiques à prendre en compte dans la modélisation géologique des aquifères par le logiciel Multilayer	67
Annexe 3 : Etudes géostatistiques sur les débits Réservoirs de l'Oxfordien, du Dogger, du Muschlekalk et du Buntsandstein	79

1. Introduction

Dans le cadre d'une convention passée entre, d'une part, l'Agence Régionale de l'Environnement en Lorraine, représentant l'Agence de l'Environnement et de la Maîtrise de l'Energie, le Conseil Régional Lorraine, et Electricité de France, et, d'autre part, le BRGM, ce dernier a entrepris la réalisation d'un atlas des ressources géothermales superficielles pour pompes à chaleur (PAC) sur les aquifères lorrains. Cet atlas du potentiel géothermique des nappes d'eau souterraines « accessibles » de la région a pour objectif de servir d'outil d'aide à la décision sur la géothermie très basse énergie.

Il présente les caractéristiques de cinq aquifères majeurs régionaux, en identifiant les secteurs favorables à l'implantation de projets géothermiques. Il permet d'aider à sélectionner la ressource géothermique la plus propice à être exploitée quand plusieurs coexistent, et ce, préalablement à la réalisation de l'étude de faisabilité que doit engager tout maître d'ouvrage avant l'exécution d'un projet de géothermie. La limite inférieure d'investigation a été fixée à l'altitude 0 m NGF (Nivellement Général de France), c'est-à-dire à la référence des topographes, pour la plupart des réservoirs aquifères traités.

Des exemples représentatifs des paramètres pris en compte pour caractériser chaque réservoir aquifère sont présentés. Ils sont abordés dans l'ordre des âges des aquifères des plus récents aux plus anciens, c'est-à-dire globalement des moins profonds aux plus profonds. En préalable, les données acquises et valorisées aux cours de l'étude sont présentées. Les méthodes employées pour évaluer les potentialités de production des aquifères de la Lorraine sont aussi explicitées.

Afin de faciliter la compréhension du texte, les termes techniques sont suivis d'un astérisque et définis dans le glossaire de la dernière partie du présent rapport.

2. Cadres géologique et hydrogéologique

2.1. LA GEOLOGIE LORRAINE

La Lorraine se situe sur la bordure orientale de la grande structure géologique du Bassin de Paris. Ce bassin sédimentaire s'est formé par subsidence* du fait de l'empilement des couches sédimentaires au cours de plusieurs centaines de millions d'années, les plus récentes reposant par essence sur les plus anciennes. Les affleurements* de cet ensemble géologique s'organisent en auréoles concentriques, comme il est possible de le voir sur la carte ci-dessous. Les âges en millions d'années des formations sédimentaires rencontrées en Lorraine sont présentés dans leurs grandes lignes sur l'illustration 2. Les formations les plus vieilles du bassin, correspondant à la base de celui-ci, s'appuient à l'Est sur le massif des Vosges, qui est constitué essentiellement par des terrains schisteux de l'ère Primaire et par le socle granitique.

Illustration 1 : Extrait de la carte géologique de la France au millionième, centré sur le Bassin Parisien.

Illustration 2 : Table stratigraphique simplifiée de la Lorraine.

La coupe Ouest-Est reportée sur l'illustration 3 précise l'agencement de la majeure partie des formations géologiques lorraines, et illustre la structure du bassin dite en « pile d'assiettes ». La succession à l'affleurement des roches de différentes natures, et par là même de duretés variées, fait que les plus tendres ont été érodées (cas du Kimméridgien marneux, du Callovien argileux et du Lias marneux), alors que d'autres ont au contraire résisté à l'érosion et sont devenues proéminentes (cas du Tithonien calcaire situé au-dessus du Kimméridgien, de l'Oxfordien calcaire et du Dogger calcaire). Cette caractéristique est à l'origine de la formation du célèbre relief de cuesta* de l'Est de la France, dont les meilleurs représentantes sont les côtes de Meuse et de Moselle.

Illustration 3 : Coupe Ouest-Est de la bordure orientale du Bassin de Paris (d'après Ramon et al., 1992).

L'objectif de l'atlas est de réaliser une cartographie des possibilités d'utilisation de pompes à chaleur sur les principaux aquifères accessibles de la Lorraine. Par construction, la formation aquifère dite des grès d'Hettange-Luxembourg a été exclue de cet atlas, puisqu'elle n'est rencontrée à l'affleurement sur le territoire lorrain que sur une superficie très restreinte d'une quinzaine de kilomètres carrés. Les grandes nappes d'eau souterraine qui ont donc été sélectionnées dans le cahier des charges du projet sont celles des calcaires du Tithonien, des calcaires de l'Oxfordien, des calcaires du Dogger, des calcaires du Muschelkalk, et des grès du Trias inférieur (GTI).

2.2. DELIMITATION DES PRINCIPALES FORMATIONS AQUIFERES AFFLEURANTES

La définition de la géométrie des cinq aquifères pris en compte dans l'atlas a constitué la première étape du travail de cartographie qui a été mené. En premier lieu, il s'agissait de délimiter précisément les affleurements de ces formations aquifères. Le principe fondamental suivi était de réaliser une délimitation des réservoirs aquifères, indépendamment de l'âge des roches.

Les documents de base qui ont été utilisés sont les feuilles géologiques à l'échelle 1/50 000 de la région lorraine. Ces cartes, levées et éditées entre 1955 et 1998, ne reflètent pas nécessairement une homogénéité de la connaissance géologique, les objets et méthodes des géosciences ayant considérablement évolué au cours de cette période. Un travail d'harmonisation des feuilles a donc été entrepris sur l'ensemble de la région. D'un point de vue hydrogéologique, il s'agissait d'une mise en concordance des unes par rapport aux autres. Des regroupements de formations ont été faits pour assurer la cohérence des réservoirs aquifères. Les extensions des formations aquifères ont également été complétées dans certains secteurs, comme ceux des zones de recouvrement par des sédiments du Quaternaire, en suivant des critères géomorphologiques.

Des exemples d'interprétations qui ont ainsi été faites pour parvenir à réaliser la cartographie des principaux affleurements des aquifères lorrains sont présentés sur l'illustration 4.

Illustration 4 : Exemples d'assemblage et de découpage des formations géologiques.

Sur le log géologique de la figure de gauche, les niveaux marneux imperméables d'épaisseur restreinte n'ont pas été considérés vis-à-vis de l'ensemble du réservoir aquifère calcaire du Dogger. Inversement, lorsque des formations intercalaires imperméables de forte puissance* ont été rencontrées, elles entraînaient le découpage du réservoir en plusieurs parties. C'est notamment le cas du secteur situé à la limite de la Woëvre et du Pays Haut-Lorrain, où les Marnes à Rhynchonelles séparent la Dalle d'Etain à l'Ouest, des calcaires du Bajocien à l'Est.

La carte de droite de l'illustration 4 présente pour les feuilles géologiques de Clermonten-Argonne et de Vaubécourt les différents types d'interprétation qui ont été systématiquement mis en application pour lever la carte des aquifères : harmonisation de la limite entre deux feuilles ; regroupement des Sables Verts de l'Albien avec les calcaires du Tithonien, qui supportent une même nappe d'eau souterraine, les premiers reposant en discordance* sur les seconds (la terminologie finale de « nappe des calcaires du Tithonien » devenant quelque peu abusive) ; délimitation intermédiaire des Sables Verts masqués par un recouvrement de limons, grâce aux courbes topographiques ; délimitation vers l'Ouest de l'affleurement des Sables Verts, qui sont recouverts par les alluvions du ruisseau de Courbreuil, en considérant que la formation alluviale qui est en incision sur son substratum a érodé les argiles du Gault. L'illustration 5 résume la position de la limite supérieure du réservoir du Tithonien en fonction des secteurs géographiques, et en fonction des feuilles géologiques.

Ce travail d'interprétation a permis d'améliorer la délimitation usuelle des aquifères. L'amélioration apportée à la version originale – *la seule achevée et éditée jusqu'à présent* – de la Base de Données pour le Référentiel Hydrogéologique Français (BD RHF V1) est parfois considérable. L'affleurement du réservoir des calcaires oxfordiens a par exemple été agrandi et repoussé d'environ 8 kilomètres vers l'Ouest sur la zone d'âge kimméridgien.

La carte des affleurements a été vectorisée sous système d'informations géographiques (SIG) à l'aide du logiciel MapInfo Professional, ce qui a permis de lier les objets graphiques à une base de données interrogeable. La carte des principaux affleurements des aquifères lorrains est présentée sur l'illustration 6. La précision de celle-ci est de l'ordre de 10 mètres. Au total, ont été vectorisés 9 480 km de périmètre d'affleurement d'aquifères, soit 10 700 km² de surface affleurante d'aquifères. Les affleurements des cinq aquifères ont ainsi été délimités en digitalisant 147 000 nœuds. Un tableau indiquant les limites inférieures et supérieures des aquifères des grès du Trias inférieur, des calcaires du Muschelkalk, des calcaires du Dogger, des calcaires de l'Oxfordien et des calcaires du Tithonien est reporté en annexe 1.

Illustration 5 : Délimitation du toit du réservoir du Tithonien.

Illustration 6 : Principaux affleurements des aquifères lorrains.

Atlas du potentiel géothermique des aquifères lorrains

50

Illustration 7 : Coupe Ouest-Est des réservoirs aquifères.

2.3. MODELISATION GEOLOGIQUE

La seconde étape de la constitution géométrique de l'atlas correspondait à la délimitation du mur et du toit, c'est-à-dire des épontes inférieure et supérieure, de chaque réservoir aquifère. Lors du montage de l'opération, les données initialement prévues comme devant être récupérées à partir de l'atlas hydrogéologique du bassin Rhin-Meuse (édité par l'Agence de l'eau Rhin-Meuse), se sont révélées ne pas être en adéquation avec la précision recherchée pour l'atlas du potentiel géothermique. Il s'agissait d'une synthèse cartographique de réservoirs aquifères, effectuées à partir de données de forages et de failles, et à partir de coupes et de cartes converties en grilles numériques lorsqu'elles étaient fiables (Le Nindre, 1995). Le contrôle des données avait été fait là aussi en s'appuyant sur les feuilles géologiques de la zone d'étude.

Ne pouvant reprendre en l'état ces résultats, de nouvelles cartes ont été réalisées pour prendre en compte la profondeur des cinq aquifères. Le logiciel de modélisation géologique MultiLayer, développé par le BRGM, a été utilisé pour ce faire. C'est une application complémentaire de GDM (Geological Data Management), spécialement dédiée à la réalisation de modèles multicouches (2,5D) et rendant typiquement compte de formations de bassin sédimentaire. Elle utilise le concept de pile stratigraphique et intègre de nombreux outils nécessaires à la vérification des données. Le modèle multidimensionnel peut être construit par interpolation géostatistique de façon à obtenir les incertitudes des estimations. A partir du modèle, on peut calculer des sondages prévisionnels ou déterminer les volumes/surfaces des formations géologiques modélisées.

Les cartes des épontes des aquifères ont été produites jusqu'à l'altitude 0 m NGF (approximativement le niveau de la mer à Marseille) pour les quatre aquifères carbonatés du Tithonien, de l'Oxfordien, du Dogger et du Muschelkalk. En effet, en règle générale, les formations calcaires sont affectées par une perméabilité* de fissure ou de fracture qui a tendance à se refermer avec la compression des terrains en profondeur. Il serait donc illusoire de vouloir représenter ces aquifères au-delà d'une certaine profondeur, étant donné qu'ils n'auraient vraisemblablement plus de propriétés hydrogéologiques intéressantes. En revanche pour les grès du Trias inférieur, la modélisation de la géométrie du réservoir a été faite à l'aplomb de pratiquement toute la région lorraine (illustration 7).

Pour la redéfinition de la géométrie des formations géologiques, l'existant a été pris en compte et affiné. Les données d'entrée injectées dans le modèle étaient des points, sondages, courbes, grilles 2D, et images. Ces données correspondent à des séquences de dépôt/érosion, des coupes ou des contours des cartes géologiques, des profils sismiques, ou encore des failles considérées comme verticales. La liste de toutes les formations géologiques prises en compte, en fonction des feuilles géologiques, est précisée dans l'annexe 2. Les données de sondage ont ainsi été actualisées et compilées par rapport à celles utilisées antérieurement pour produire le travail de 1995.

La cohérence des données entre elles, et avec la carte des affleurements des cinq aquifères (présentée sur l'illustration 5), et les corrélations entre sondages géologiques (voir l'illustration 8 de gauche par exemple) ont aussi été contrôlées. Sur l'illustration 8 de droite, les cassures et courbures qui affectent les isohypses* du toit du Dogger mettent en évidence la structure chahutée de la formation géologique du Jurassique moyen. C'est la prise en compte d'un réseau de failles pour réaliser la modélisation de la géométrie de cette formation qui a en particulier permis d'obtenir ce résultat très précis.

Les résultats finaux de la modélisation géologique, obtenus pour les toits des cinq réservoirs aquifères, sont présentés en perspective sur l'illustration 9 afin de compléter leur visualisation.

Toutefois, le strict respect de la délimitation des épontes des réservoirs aquifères identifiées dans la phase du projet précédent n'a pas pu être garanti systématiquement, puisqu'il dépendait des informations géologiques disponibles. Par exemple, pour le toit du réservoir du Muschelkalk, dans l'emprise des cartes géologiques de Parroy, Bayon et de Lunéville, la Dolomie inférieure de la Lettenkohle n'est pas individualisée. L'aquifère englobe les argiles de la Lettenkohle. Dans ces secteurs, l'altitude du toit de l'aquifère est donc surestimée de 20 mètres environ. Pour le mur du réservoir aquifère du Muschelkalk, dans l'emprise des feuilles géologiques de Cirey-sur-Vezouze, Vittel, Epinal et Monthureux-sur-Saône, les Couches blanches sont intégrées à l'aquifère. Là, l'altitude du mur du réservoir est donc sous-estimée d'environ 5 mètres (illustration 10).

La procédure suivie pour modéliser le toit de l'aquifère de l'Oxfordien rend compte, de même, des entorses qui ont parfois étaient faites aux règles que nous nous étions prédéfinies à l'origine. C'est un niveau repère pétrolier (repère K) correspondant au toit du Séquanien, c'est-à-dire au toit des Calcaires à Astartes, qui a en fait permis d'identifier la limite supérieure du réservoir aquifère.

Illustration 8 : A gauche, exemple d'analyse des corrélations entre sondages (BRGM, 1980). A droite, altitudes modélisées du toit du Dogger (échelle ~ 1/1 800 000).

Illustration 9 : Altitudes modélisées des toits des réservoirs (échelle ~ 1/1 400 000 ; pour plus de lisibilité, le Buntsandstein a été décalé vers le bas).

Dans l'emprise des cartes des zones nord (Stenay) et sud (Bar-le-Duc, Commercy, Joinville et Gondrecourt-le-Château, le repère K marque bien le sommet de l'aquifère qui coïncide effectivement avec le toit des Calcaires à Astartes. Au contraire, dans la zone couverte par les cartes centrales (Monthois, Verdun, Clermont-en-Argonne, Vigneulles-lès-Hattonchâtel, Vaubécourt et Saint-Mihiel), le toit de l'aquifère correspond au toit des calcaires rocailleux à Ptérocères, recouvrant les Calcaires à Astartes. Le repère K (toit des Calcaires à Astartes) n'y représente qu'approximativement le sommet de l'aquifère, situé 10 à 20 mètres plus haut selon les lieux.

Pour le mur de l'aquifère oxfordien, la méthodologie adoptée était de considérer que le mur de l'aquifère correspondait à la base du Terrain à Chailles sur toute l'étendue de la Lorraine. C'est en effet une formation de transition entre les Argiles de la Woëvre et les faciès à polypiers du complexe récifal des côtes de Meuse. Le Terrain à Chailles

Illustration 10 : Incertitudes sur la délimitation du réservoir du Muschelkalk.

correspond à une alternance de bancs calcaires et d'interbancs marneux ou d'argilite calcaire, ces derniers diminuant d'épaisseur de la base au sommet en même temps que s'épaississent les bancs calcaires. Sur le plan cartographique, le caractère progressif du passage des Argiles de la Woëvre au Terrain à Chailles, et la localisation du passage dans le pied de la cuesta oxfordienne des côtes de Meuse, rendent difficile le dessin précis du contour géologique, et induisent donc une relative imprécision quant à la cote du mur de l'aquifère à l'affleurement ; les forages ayant atteint la base du Terrain à Chailles étant trop peu nombreux pour permettre une interpolation fiable de la base de l'aquifère. La complexification de la problématique a finalement alourdi la méthode employée pour modéliser le mur de l'aquifère :

- sélection de tous les forages ayant reconnu le mur de l'aquifère (à savoir le mur du Terrain à Chailles);
- sélection de tous les forages ayant reconnu le toit du Terrain à Chailles mais n'en n'ayant pas atteint le mur. Nouveau calcul de la cote du mur en soustrayant 40 mètres de terrain (épaisseur moyenne de cette formation d'après les notices des cartes géologiques à 1/50 000);
- calcul de l'épaisseur de l'aquifère par la différence entre la cote de son toit (cote du repère K) et celle de son mur (reconnue ou calculée) ;
- établissement d'une carte d'épaisseur de l'aquifère, uniquement dans l'enveloppe d'extension du toit de l'aquifère. Digitalisation des isovaleurs après vérification, correction des anomalies et lissage éventuel. Nouveau calcul de la cote du mur au droit des points digitalisés, par différence avec la cote du repère K. Obtention d'une base de points avec la cote du mur de l'aquifère ;

- à cette base de points, ont ensuite été ajoutées les cotes du mur de l'aquifère fournies par les forages situés dans la zone d'affleurement, et l'ensemble des points d'affleurement du mur de l'aquifère ;
- interpolation de la base complète pour réaliser la carte finale du mur de l'aquifère.

Ainsi des choix techniques ont dû être faits pour parvenir à modéliser correctement et le plus précisément possible la géométrie du système de réservoirs aquifères, notamment à cause des nombreuses variations latérales de faciès* que l'on retrouve sur les séries sédimentaires lorraines, comme l'illustre la figure suivante.

Illustration 11 : Exemple de variations latérales de faciès rencontrées en Lorraine.

2.4. MODULATION DE LA GEOMETRIE PAR LA PIEZOMETRIE

La modélisation géologique mise en œuvre a permis de déterminer de manière synthétique les altitudes des épontes des cinq réservoirs aquifères, en particulier du point de vue de leur précision. Dans les zones affleurantes des réservoirs, les interfaces modélisées ont été substituées par la piézométrie des nappes. En effet, ce n'est pas l'altitude du sol, qui correspond à l'éponte supérieure du réservoir (et de profondeur nulle), qui est à prendre en compte mais la profondeur à laquelle est effectivement rencontrée la nappe d'eau souterraine.

La figure schématique suivante illustre pour les cinq aquifères étudiés, le besoin de connaître la profondeur du toit du réservoir aquifère en zone sous couverture d'une part, et la profondeur de la nappe d'eau souterraine en zone d'affleurement d'autre part. En toute rigueur, il peut également exister une zone intermédiaire au droit de laquelle la nappe est située plus bas que le toit du réservoir, c'est-à-dire dans les secteurs où le réservoir est sous couverture et la nappe est libre. Cependant, il est difficile de délimiter ce dernier type de zone, dont l'extension est probablement faible.

Il s'agit, dans tous les cas, de profondeurs minimales à atteindre, car à la différence d'un piézomètre qui en principe n'est ouvert que sur une hauteur ponctuelle, le forage d'eau destiné à capter une nappe est crépiné sur une hauteur qui peut faire plusieurs dizaines de mètres.

Illustration 12 : Profondeurs ciblées selon les zones des réservoirs.

2.5. RAPPEL SUR LES FORAGES D'EAU

L'illustration précédente met en évidence la différence fondamentale existant entre une nappe libre et une nappe captive : la surface piézométrique de cette dernière est supérieure au toit de l'aquifère, celui-ci étant recouvert par une formation géologique moins perméable que lui-même. Lorsque la surface piézométrique devient supérieure au sol, on dit que la nappe est artésienne. En complément, rappelons que pour capter une nappe captive, même si son niveau piézométrique est proche du sol, il faut cependant forer en profondeur jusqu'à atteindre le réservoir aquifère qui contient la nappe.

Ainsi, selon qu'une nappe est libre ou captive, le type de forage et d'équipement diffère. Les coupes techniques suivantes rappellent les grands principes et les règles de l'art de réalisation des forages d'eau.

Illustration 13 : Forages d'eau en nappe libre.

Illustration 14 : Forage en nappe captive (ouvrage télescopé réalisé en plusieurs étapes).

3. Caractérisation des aquifères

3.1. ACQUISITION DES DONNEES

Pour décrire les cinq aquifères étudiés ainsi que leurs nappes d'eau souterraines, nous avons entrepris de collecter, le plus largement possible, des données quantitatives et qualitatives. Les sources d'informations étaient la banque d'Accès aux Données des Eaux Souterraines (ADES), la Banque des données du Sous-Sol (BSS), l'« Inventaire Lorraine » 2003 de la qualité des eaux souterraines, le Réseau de Bassin des Eaux Souterraines (RBES) et les archives du BRGM. Plusieurs dizaines de milliers de données ont ainsi été récupérées, suivant les paramètres étudiés.

Le point de vue adopté pour caractériser les aquifères était de partir des informations brutes disponibles comme base de travail. Ainsi, pour les paramètres hydrogéologiques, plutôt que de compiler les résultats fournis dans la littérature par les différentes synthèses hydrogéologiques faites sur les départements, les régions, ou les bassins versants – *ce qui aurait eu pour conséquence de biaiser les statistiques et de créer une distorsion des informations* – il a été choisi de synthétiser des données ponctuelles existant pour chaque commune. Ces données ont par exemple été collectées dans des études de faisabilité ou d'aménagement de captages communaux d'alimentation en eau potable. Les informations qui ont ainsi été récupérées sont pour la plupart des données factuelles.

A titre d'exemple, plusieurs centaines de valeurs de paramètres hydrodynamiques ont été engrangées pour le réservoir aquifère de l'Oxfordien à l'issue de la première phase de sélection des données (illustration 15). Pour les cinq réservoirs, ce sont généralement les données de débits qui ont été collectées en plus grands nombres.

	Débits	Rabattement	Débits	Transmissivité
	(m³/h)	(m)	spécifiques (m³/h/m)	(m²/s)
Nombre de valeurs	405	159	101	47
Valeur minimum	9,2E-03	7,0E-02	1,6E-02	1,3E-04
Valeur maximum	501	71,6	848	0,5
Moyenne	51,3	4,5	59,5	9,5E-02
Ecart-type	85,4	8,6	126,5	1,2E-01
Coefficient de variation	1,67	1,89	2,13	1,23
Médiane	18,4	1,7	7,9	7,0E-02
1e quartile	6,0	0,8	2,8	1,0E-03
3e quartile	52,0	4,6	57,2	1,4E-01
Ecart interquartile	46	3,8	54,5	1,4E-01

Illustration 15 : Paramètres hydrodynamiques collectées pour l'Oxfordien.

Les couches du SIG, représentant les cinq aquifères lorrains traités dans le projet, ont ainsi pu être affectées d'attributs correspondant en particulier aux critères hydrogéologiques des réservoirs aquifères et aux caractéristiques hydrochimiques des nappes. Il s'agit d'informations numériques stockées dans une base de données. La retranscription des valeurs de ces attributs a pu être faite sous la forme de cartes présentées dans l'atlas, après un certain nombre de traitements des données.

3.2. APPROCHE ADOPTEE POUR VALORISER LES DONNEES

Afin d'illustrer le travail qui a été réalisé pour exploiter les données collectées, nous porterons notre attention sur les débits pompés dans les cinq nappes d'eau souterraines prises en compte dans l'atlas, puisqu'ils correspondent aux informations hydrodynamiques disponibles qui étaient les plus nombreuses. L'idée initiale de l'approche entreprise était que « *le facteur prépondérant pour initier un projet de PAC sur nappe est l'importance du débit qu'on peut soutirer à celle-ci* ». Ainsi, l'aide à la décision que peut apporter l'atlas des ressources énergétiques des principaux aquifères lorrains est une orientation sur la valeur du débit potentiel d'un prélèvement qui pourrait être fait dans une nappe d'eau souterraine donnée.

Pour parvenir à estimer de manière cartographique et continue les débits de pompage sur nappe, il est possible d'adopter une approche directe ou une approche indirecte. La première consiste à étudier directement les statistiques des données de débit et leur répartition spatiale. La seconde est d'estimer les débits de pompage en faisant appel à des formules de calcul comme celles de Dupuit ou de Jacob (voir ci-dessous), qui revêtent un formalisme relativement simple. Connaissant la répartition des valeurs de perméabilité ou de transmissivité, et considérant un rabattement donné, on peut parvenir à cartographier les débits de pompage. Cependant, ce type d'approche indirecte est fortement contraint par la précision des différents paramètres intervenant dans l'estimation. La précision des résultats étant donnée par un calcul différentiel des erreurs de ces paramètres, elle est en fin de compte plus élevée que celle qui pourrait être obtenue par une approche directe. Remarquons toutefois que l'approche cartographique indirecte peut être réalisée avec succès dans le cadre de la mise en place de modèles hydrodynamiques de calculs. Mais la mise en œuvre de tels modèles correspondrait à une approche très lourde qui dépasserait largement le cadre de la réalisation de l'atlas géothermique.

		s, le rabattement à la distance r de l'axe du forage
		Q, le débit de pompage
$s = 0,183 - \log \frac{2,25.1.1}{2}$	avec :	T, la transmissivité de la nappe
T r ² .S		t, la durée de pompage
(Formule de Jacob)		r, la distance au forage du point considéré
		S, le coefficient d'emmagasinement de la nappe

Par le passé, la cartographie des débits de pompage sur les nappes d'eau souterraine a aussi été faite en réalisant des zonages manuels autour des données recueillies. Les outils théoriques et les développements numériques permettent maintenant de réaliser des cartographies plus élaborées et plus objectives. Il est donc souvent préférable d'entreprendre une étude statistique des données, en privilégiant le plus possible les interpolations des valeurs disponibles par krigeage*. Cela permet d'appréhender la dualité de l'aspect aléatoire et structurée du phénomène étudié. L'approche géostatistique a par ailleurs l'avantage de permettre de quantifier l'erreur de l'estimation du débit. La répartition spatiale des données, appelée structure, est étudiée en analysant la corrélation des données entre elles, selon leur éloignement les unes des autres ou interdistance (h). Celle-ci est faite à partir de l'analyse du variogramme expérimental $\gamma(h)$, calculé selon la formule présentée ci-dessous.

Des exemples de traitement des données collectées sont présentés ci-après. Ils correspondent, pour chacun des cinq réservoirs aquifères, à des paramètres différents permettant d'illustrer la variété des informations qui ont été étudiées.

3.3. EXEMPLES DE TRAITEMENT DES DONNEES

3.3.1. Exemple des débits du réservoir du Tithonien

Lors de la collecte des données de débit pour le réservoir du Tithonien, comme pour tous les autres aquifères, un premier type de sélection des données a été fait. Il s'agissait de sélectionner les données rattachables à un ouvrage géoréférencé et déclaré en BSS, et pour lequel l'aquifère capté était bien identifié. La nature des données disponibles étant très variée, il n'a pas été possible de différencier les débits, sauf à risquer de ne disposer que de populations réduites pour tel ou tel type de débit. Les données rassemblées étaient ainsi des débits d'exploitation, des débits maximums, des débits minimums, des débits d'étiage, des débits moyens, des débits potentiels, des débits d'essais par pompage, des débits de sources, des débits de forages, des débits sans indication, des débits majoritairement non synchrones, etc.

Une analyse critique de ces données a été menée afin d'écarter celles aberrantes ou de les corriger (vérification de leurs coordonnées géographiques, nouvelle vérification de l'aquifère sollicité, de la valeur du débit, …). La distribution des débits du Tithonien selon des classes est précisée sur la partie gauche de l'illustration 16. Le variogramme expérimental de toutes les données, présenté sur la partie droite de l'illustration 16, est omnidirectionnel* étant donné le peu de couples de points utilisables pour les calculs.

Afin de limiter le caractère erratique du variogramme expérimental, celui-ci a par la suite été calculé avec les données de débits inférieures à 35 m³.h⁻¹ (illustration 17). Son comportement erratique est cependant resté bien marqué. Cela peut s'expliquer par le fait qu'un débit est, par nature, une variable qui se prête mal à la cartographie. En effet, un débit de pompage n'est pas une propriété totalement intrinsèque à un aquifère : elle reflète à la fois les propriétés physiques de l'aquifère (caractéristiques hydrodynamiques), mais aussi des critères techniques (méthode de foration, géométrie et développement de l'ouvrage d'eau, savoir faire en matière de réalisation de forage), voire des facteurs socio-économiques (densité de population, coûts, conjoncture économique).

Un modèle de variogramme a été ajusté sur le variogramme expérimental calculé à partir des données de débits inférieures à 35 m³.h⁻¹. L'ajustement convenable des paramètres retenu pour estimer les débits de pompage dans le réservoir du Tithonien est présenté sur l'illustration 17 (courbe rouge).

Illustration 16 : Histogramme des débits disponibles pour le Tithonien et variogramme expérimental obtenu.

Illustration 17 : Modèle de variogramme utilisé pour modéliser les débits du Tithonien.

L'utilisation d'un effet de pépite de 10 $(m^3.h^{-1})^2$ dans le modèle de variogramme peut largement se justifier. Il correspond effectivement à une erreur de mesure de débit égale à la racine carrée de cette valeur, soit à environ 3 $m^3.h^{-1}$. Une telle erreur, et même davantage, se retrouve sur une courbe caractéristique de pompe. Pour l'exemple de l'illustration 18, on constate que les meilleurs rendements de la pompe sont en regard d'une importante plage de variation de débit et de hauteur manométrique. En d'autres termes, cela signifie qu'au cours d'un cycle de pompage dans un forage d'eau, le débit de pompage peut évoluer significativement et entraîner une erreur de mesure supérieure à 3 $m^3.h^{-1}$.

Illustration 18 : Courbes caractéristiques d'une pompe (d'après Mabillot, 1971).

L'estimation des débits avec ce modèle théorique à deux structures (sphérique et gaussienne) a été faite sur la population des débits inférieurs à 110 m³.h⁻¹. En effet, le réservoir du Tithonien correspond à une formation carbonatée dotée d'une fissuration, mais qui est également karstifiée* comme en rendent compte les débits importants de plusieurs centaines de m³.h⁻¹ qui peuvent y être prélevés. La délimitation des zones karstiques des calcaires est difficile à appréhender dans la mesure où la karstification est par nature discontinue : le milieu karstique est hétérogène quelle que soit l'échelle. La notion de Volume Elémentaire Représentatif (VER) pour caractériser en moyenne un aquifère devient de ce fait inadaptée ; le VER d'un aquifère karstique étant de dimension extrêmement importante, allant jusqu'à correspondre à la formation aquifère en entier.

La localisation ponctuelle d'indices karstiques (dolines, avens, conduits kartsiques, ...) peut toutefois être reportée, comme sur l'illustration 19 où les cavités naturelles recensées dans le secteur sud-ouest du plateau du Barrois sont représentées par des

étoiles jaunes. L'étude des processus de karstification (Jaillet, 1999) a aussi permis de dresser, pour le département de la Meuse, une carte de la sensibilité à la karstification des calcaires du Tithonien. Il s'agit de la délimitation des zones à forte karstification potentielle (Vaute *et al.*, 2005; voir par la suite l'illustation 21). Elles ont été déterminées en considérant qu'elles s'étendaient jusqu'à une distance de 10 kilomètres (vers l'Est), au-delà du contact lithostratigraphique qui existe entre les calcaires du Tithonien et les terrains plus récents qui les recouvrent. Elles englobent l'ensemble des indices karstiques inventoriés dans ces calcaires.

Illustration 19 : Cavités souterraines inventoriées dans le Sud-Ouest du plateau du Barrois et affectant le Tithonien (Fischer et al., 2005).

Les aquifères carbonatés sont classiquement définis comme des milieux à double porosité et double perméabilité. A une échelle très fine, il est possible de visualiser les pores au travers desquels l'eau peut circuler, par exemple entre les grains d'un calcaire oolithique (illustration 20 de gauche). La perméabilité de matrice du milieu correspondant est généralement faible à médiocre. A une échelle plus large (illustration 20 du centre), interviennent les fissures de la formation géologique, dont les perméabilités directionnelles sont beaucoup plus importantes que la perméabilité de matrice.

Dans l'étude du comportement hydrodynamique d'un aquifère karstique on retrouve ces deux échelles d'observation, avec la porosité inter-granulaire et l'ouverture des fissures dans lesquelles l'eau peut circuler. A plus vaste échelle (illustration 20 de droite), il est possible d'observer des conduits karstiques. La notion de perméabilité n'intervient plus pour ces conduits, puisqu'ils peuvent être le siège d'écoulements turbulents.

Tous ces vides ou ouvertures observables à différentes échelles dans la roche sont en relation les uns avec les autres de manière hiérarchique. L'eau de la porosité matricielle contribue à alimenter la fissuration, qui elle-même alimente le réseau karstique. Mais c'est probablement la fissuration qui permet d'obtenir le plus fréquemment des débits de prélèvement significatifs. Ce sont manifestement ces débits induits par la fissuration qui peuvent être cartographiés de la manière la plus régulière. Ils pourraient atteindre environ une centaine de m³.h⁻¹. De fait, tous les essais d'estimation cartographique des débits du Tithonien, à partir des données factuelles dont les valeurs étaient supérieures à 110 m³.h⁻¹, n'ont pas abouti.

Illustration 20 : Blocs diagrammes conceptuels de la structure d'un milieu carbonaté.

La méthode d'interpolation et les choix et hypothèses qu'elle a nécessités ayant été précisés, il est finalement possible de présenter la carte de l'estimation des débits du Tithonien, calculée pour les données inférieures à 110 m³.h⁻¹ (illustration 21). La délimitation des zones à forte karstification potentielle dans les calcaires du Tithonien n'est que partiellement intéressante étant donné que celles-ci recouvrent la majorité de l'aquifère. On constate que les quelques données de débits supérieures 110 m³.h⁻¹ inventoriées (points roses) sont bien situées dans les zones à forte karstification potentielle. Les résultats obtenus pour les quatre autres réservoirs sont présentés dans l'annexe 3.

Illustration 21 : Carte des débits du Tithonien.

3.3.2. Exemple de la température pour l'Oxfordien

Parmi les critères à prendre en compte dans le cadre d'un projet de réalisation de PAC sur nappe, la température de l'eau est à étudier. Son élévation est un facteur favorable à l'entreprise d'un projet. Une approche géostatistique a donc également été mise en œuvre afin d'interpoler les données de température disponibles.

La distribution des températures de l'eau dans la nappe de l'Oxfordien est présentée selon des classes sur l'histogramme de l'illustration 22 de gauche. La distribution des températures est globalement de type normal, laissant supposer l'existence d'une structure spatiale plus nette que celles observées pour les variables des débits.

Le graphique de la fonction variogramme calculée pour les températures dans la nappe oxfordienne est présenté sur l'illustration 22 de droite. Il apparaît que le variogramme expérimental est bien structuré. Une structure relativement triviale a été ajustée à ce variogramme expérimental. Il s'agit d'un modèle sphérique, avec un palier de 1,0 (°C)² et une portée de 4 000 mètres. Un effet de pépite 0,45 (°C)² a été pris en compte.

Les résultats de l'estimation par krigeage des températures sont présentés sur l'illustration 19. L'allure de la carte des températures estimées est correcte, même s'il existe quelques artéfacts d'interpolation qui sont visibles dans les secteurs où il y a peu de données. Ces artéfacts visuels, fréquemment rencontrés lors d'interpolations, n'ont pu être éliminés quels que soient les méthodes utilisées et les voisinages d'interpolation employés. Les températures obtenues vont de 6,2 °C à 12,6 °C, avec un écart-type de 0,4 °C.

Illustration 22 : Etude géostatistique de la température de l'eau dans la nappe de l'Oxfordien.

Illustration 23 : Résultats des températures interpolées pour l'Oxfordien.
3.3.3. Exemple du chlorure pour le Dogger

A contrario des deux paramètres précédents de l'aquifère du Tithonien et de la nappe de l'Oxfordien, dont les importances sont favorables à l'entreprise d'un projet de pompe à chaleur sur nappe, les autres caractéristiques des eaux souterraines qui sont aussi à prendre en compte ont des influences défavorables. Le premier cas présenté pour la nappe du Dogger concerne le chlorure. L'augmentation des concentrations en chlorure tend à rendre les eaux souterraines corrosives, pouvant générer un surcoût d'investissement et d'exploitation.

La distribution des concentrations en chlorure dans la nappe du Dogger est plurimodale (voir l'histogramme de l'illustration 24 en bas à gauche). La majorité des valeurs de concentration sont inférieures à 50 mg.L⁻¹. Les cinq valeurs supérieures à ce seuil de concentration ont pour incidence de déstructurer spatialement l'ensemble des données, comme en témoigne l'analyse variographique. En effet, le variogramme expérimental calculé avec toutes les données disponibles est erratique (illustration 24 en haut à gauche). Il en est de même en omettant les valeurs relatives aux bassins ferrifères lorrains et qui pourraient caractériser des épiphénomènes (illustration 24 en haut à droite). Pour les populations de données dont les valeurs sont inférieures au seuil de 50 mg.L⁻¹, il est possible d'ajuster au variogramme expérimental un modèle (courbe rouge sur l'illustration 24 en bas à droite). Il s'agit d'une structure gaussienne, avec un palier de 50 (mg.L⁻¹)² et une portée de 10 000 mètres. Un effet de pépite de 45 (mg.L⁻¹)² a été pris en compte.

Illustration 24 : Distribution des concentrations en chlorure et variogrammes pour le Dogger.

La variabilité spatiale des concentrations en chlorure calculées dans la nappe du Dogger est présentée sur l'illustration 25 ci-dessous. Le krigeage a été fait sur les données inférieures à 50 mg.L⁻¹. Les quelques valeurs de concentration supérieures à ce seuil entraînent effectivement un biais en surestimant l'estimation. Les cinq données de concentrations supérieures à 50 mg.L⁻¹ sont néanmoins repérées sur la carte des estimations afin de relativiser l'interpolation. Là aussi, quelques artéfacts visuels existent parfois dans les zones pauvres en données.

Illustration 25 : Carte du chlorure dans la nappe du Dogger.

3.3.4. Exemple du sulfate pour le Muschelkalk

Le sulfate est un paramètre à considérer du fait qu'en concentration importante dans les eaux souterraines, il peut être à l'origine du développement de bactéries qui vont dégrader les équipements et les garnitures des forages d'eau.

La distribution des concentrations en sulfate dans la nappe d'eau souterraine du Muschelkalk est précisée sur l'histogramme de l'illustration 26 de gauche. L'étude géostatistique des données montre que la concentration en sulfate dans les eaux de l'aquifère du Muschelkalk n'est pas une variable régionalisée, comme d'ailleurs tous les autres paramètres pris en compte pour cet aquifère. Les variogrammes expérimentaux calculés présentent un effet de pépite pur, quelles que soient les populations de concentration étudiées. L'illustration 26 de droite indique les résultats des calculs obtenus avec l'ensemble des données de concentration disponibles. Avec des populations correspondant à des concentrations inférieures à un certain seuil, les résultats sont similaires. Quant à la focalisation de l'étude sur certaines zones géographiques uniquement, l'analyse variographique souffre d'un nombre de données trop restreint et n'est pas probante.

La particularité du Muschelkalk est due à la répartition géographique des données, qui sont disposées selon une zone étroite et étirée en forme de croissant. Toutes les données disponibles pour l'aquifère du Muschelkalk et sa nappe ne correspondent qu'à la partie affleurante de l'aquifère. Ainsi il n'apparaît aucune structure exploitable pour réaliser l'interpolation. Seule une approche statistique classique est envisageable pour caractériser le réservoir du Muschelkalk.

Ainsi, pour la nappe du Muschelkalk, la concentration moyenne en sulfate est de $69,4 \text{ mg.L}^{-1}$, avec un écart-type de $97,0 \text{ mg.L}^{-1}$. Les valeurs des concentrations sont comprises entre 4,9 et 380 mg.L⁻¹.

Illustration 26 : Analyse géostatistique du sulfate en solution dans la nappe du Muschelkalk.

3.3.5. Exemple de la dureté pour le Buntsandstein

Le dernier paramètre présenté, comme exemple d'information traitée pour caractériser les nappes et les réservoirs aquifères, est la dureté de l'eau de la nappe du Buntsandstein. La dureté rend compte de l'importance des concentrations en ions Ca²⁺ et Mg²⁺. Son importance peut occasionner un entartrage du forage et de l'installation géothermique.

La distribution des données de dureté disponibles est présentée sur l'illustration 27 de gauche. L'histogramme est plurimodal. Néanmoins, il est possible d'appréhender simultanément la variabilité spatiale des données de toutes les populations, avec un résultat satisfaisant. Le variogramme expérimental calculé à partir de toutes les données est reporté sur l'illustration 27 de droite.

Deux structures ont été ajustées au variogramme expérimental. Il s'agit d'un modèle cubique avec un palier de 33 (°F)² et une portée de 6 000 mètres, et d'un modèle gaussien avec un palier de 28 (°F)² et une portée de 10 000 mètres. Une dérive d'ordre 1 et un effet de pépite de 2 (°F)² sont pris en compte.

L'illustration 28 présente la cartographie de la dureté des eaux de l'aquifère du Buntsandstein, calculée par krigeage à partir de ce modèle théorique de variogramme. L'estimation de la dureté a été automatiquement limitée dans la partie nord-ouest de la Lorraine à cause de l'absence de données factuelles sur la dureté des eaux souterraines. Cela étant, cette zone correspond à un secteur où le réservoir aquifère des grès du Trias inférieur (GTI) est rencontré le plus souvent à plus de 600 mètres de profondeur, ce qui réduit son accessibilité. Dans les zones pauvres en données, on retrouve les artéfacts habituels sur la carte des estimations. En limite sud-est de la carte, en dehors de la région lorraine, les données de dureté sont en revanche nombreuses. Elles correspondent à la partie affleurante de la nappe. Elles ont été utilisées dans l'analyse géostatistique puisqu'elles apportaient un surcroît d'informations sur la répartition spatiale des données de dureté dans la nappe des GTI.

Illustration 27 : Analyse géostatistique de la dureté des eaux du Buntsandstein.

Illustration 28 : Cartographie de la dureté des eaux de la nappe des GTI.

4. Potentiel d'exploitation

4.1. PRINCIPE DU CALCUL

Les différents exemples présentés illustrent la variété des paramètres permettant de caractériser les aquifères et leurs nappes d'eau souterraine. Le potentiel d'exploitation par pompe à chaleur sur chacune des cinq nappes peut être évalué en combinant tous les paramètres qui sont relatifs à la nappe. Ce type d'évaluation cartographique, effectuée par l'intermédiaire d'un système d'informations géographiques, est désigné usuellement par les termes d'analyse multicritère. Dans cette approche, les critères sont pondérés, puis combinés selon une loi additive.

L'idée déjà entrevue est que certains de ces paramètres sont favorables à la réalisation d'un projet de PAC sur nappe. Ils peuvent être vus comme des « bénéfices ». C'est avant tout le débit soutirable à la nappe d'eau souterraine. La température de l'eau de la nappe joue également un rôle intéressant dans un projet vis-à-vis du coefficient de performance de la pompe à chaleur (COP PAC). Toutefois, en géothermie très basse énergie, la température de l'eau reste un paramètre moins influant que les débits de prélèvement dans la nappe. Les températures des eaux souterraines sont en effet relativement faibles, n'atteignant 30 °C qu'en profondeur dans la nappe des grès du Trias inférieur.

Inversement, les autres paramètres peuvent être défavorables à la réalisation d'un projet de PAC sur nappe. Ils sont rangés du côté des « déficits ». Celui le plus influant est l'accessibilité à la ressource en eau, c'est-à-dire à la proximité de la ressource par rapport au sol. C'est en fait la profondeur de l'aquifère ou de la nappe d'eau souterraine, selon que le projet est situé en zone de recouvrement ou affleurante de l'aquifère. Cette distance se traduit directement en coût d'investissement. La qualité des eaux souterraines intervient secondairement. Sa dégradation peut entraîner un encroûtement ou un entartrage du forage d'eau. Une minéralisation excessive des eaux souterraines peut aussi nécessiter un traitement de l'eau pour préserver l'installation géothermique.

Le principe de base qui a été retenu dans l'approche multicritère était de pouvoir comparer les résultats d'exploitabilité des réservoirs aquifères entre eux, afin de fournir une orientation sur les potentialités d'exploitation valable à l'échelle de toute la Lorraine. Une première normalisation a été effectuée pour chaque paramètre étudié, en divisant le champ de ses valeurs interpolées par la valeur maximale estimée de ce paramètre pour tous les aquifères confondus. Cela permettait de comparer très facilement les paramètres acquis entre différentes nappes, et aussi de rendre les paramètres adimensionnels. Par exemple, pour le Dogger, dont les débits estimés sont les plus importants, les débits normés atteignaient la valeur de 1, tandis que pour le Muschelkalk, dont les débits estimés sont les plus faibles, les débits normés avaient au plus la valeur de 0,066. Une exception a été prise pour la profondeur de la ressource.

La normalisation a été faite par la profondeur maximale du Muschelkalk, qui représente environ le quart de la profondeur maximale de la ressource du Buntsandstein. Cette dernière étant effectivement supérieure à 2 000 mètres, son utilisation aurait eu pour effet d'écraser les profondeurs des autres aquifères, en particulier celle du Tithonien qui est très réduite (ressource subaffleurante).

La pondération a été faite en affectant aux paramètres normés des facteurs d'influence ou poids différents en fonction de leur nature. Pour les paramètres qui correspondent à un bénéfice, le poids était positif ; pour les paramètres qui correspondent à un déficit, le poids était négatif. Par ailleurs, selon que les paramètres ont une petite ou une grande l'influence sur la faisabilité d'un projet, nous leur avons affecté un poids dans un rapport de un à quatre (20/80 % d'influence). Les paramètres normés et pondérés ont été additionnés, en séparant les positifs, des négatifs. Ceci a permis d'obtenir pour chaque nappe, d'une part un critère d'exploitabilité positif, et d'autre part un critère d'exploitabilité négatif.

Ces critères ont à leur tour été normés par les valeurs maximales obtenues pour chacun des signes, et en les multipliant tous par cinq (multiplication des valeurs pour améliorer la lisibilité des résultats). De ce fait, dans les cas extrêmes, le critère de bénéfice a atteint la valeur de + 5, et à l'inverse le critère de déficit a atteint la valeur la plus basse de - 5 (sauf pour le Buntsandstein, pour lequel le critère de déficit a atteint la valeur la valeur de - 20). Enfin, les deux critères d'exploitabilité de signes opposés ont été additionnés. De sorte que le résultat final du potentiel d'exploitation des nappes lorraines par des pompes à chaleur s'est étalé sur une échelle théorique de dix unités, centrée sur la valeur zéro.

En résumé, le principe qui a été adopté pour pondérer et combiner les paramètres caractérisant les aquifères et leurs nappes a été le suivant :

- <u>Bénéfice (+)</u> **7** Débit : poids global de + 40 %
 - オ Température de l'eau : poids global de + 10 %
- Déficit (-)Profondeur de la ressource : poids global de 40 %Hydrochimie (eau corrosive, incrustante, ...) : poids global de 10 %

4.2. EVALUATION DU POTENTIEL D'EXPLOITATION

Les résultats de l'évaluation du potentiel d'exploitation sont présentés pour chacune des cinq nappes étudiés sur la région lorraine, sur les illustrations 29 à 34. Pour la nappe du Buntsandstein, pour laquelle la profondeur importante de la ressource peut diminuer considérablement le potentiel d'exploitation, les résultats sont présentés deux fois. Sur l'illustration 33, la palette de couleurs de l'échelle des valeurs est identique à celles des quatre illustrations qui la précédent et qui concernent les quatre autres nappes. Pour l'illustration 34, un autre nuancier de couleur a été utilisé pour permettre de distinguer les résultats du potentiel d'exploitation les plus faibles, à l'Ouest de la nappe.

Illustration 29 : Potentiel d'exploitation de la nappe du Tithonien.

Illustration 30 : Potentiel d'exploitation de la nappe de l'Oxfordien.

Illustration 31 : Potentiel d'exploitation de la nappe du Dogger.

Illustration 32 : Potentiel d'exploitation de la nappe du Muschelkalk.

Pour la nappe du Buntsandstein, la profondeur importante de la ressource pouvant diminuer considérablement le potentiel d'exploitation, les résultats sont présentés deux fois. Sur l'illustration ci-dessous, la palette de couleurs de l'échelle des valeurs est identique à celles des quatre illustrations précédentes concernant les quatre autres nappes.

Illustration 33 : Potentiel d'exploitation de la nappe du Buntsandstein.

Sur l'illustration suivante, un autre nuancier de couleur a été utilisé pour permettre de distinguer les résultats du potentiel d'exploitation les plus faibles, à l'Ouest de la nappe du Buntsandstein.

Illustration 34 : Deuxième carte du potentiel d'exploitation de la nappe du Buntsandstein (nouvelle échelle de restitution des données).

Les principaux aquifères alluviaux de la Lorraine sont reportés sur l'illustration 35. Leur délimitation est issue de la BD RHF V1. Ces aquifères sont présentés à part, dans la mesure où ils constituent des réservoirs d'épaisseurs extrêmement fines à l'échelle de la région. Leur géométrie peut évoluer puisqu'ils sont exploités pour leurs matériaux. La qualité des eaux des nappes alluviales peut également varier considérablement au cours d'une saison hydrologique.

Illustration 35 : Principales nappes alluviales en Lorraine.

L'illustration 35 ci-dessous permet de comparer entre elles les distributions des résultats de l'estimation du potentiel d'exploitation des nappes du Tithonien, de l'Oxfordien, du Dogger, du Muschelkalk et du Buntsandstein. C'est la nappe du Tithonien qui a le meilleur potentiel, puisque ses résultats sont peu dispersés et que la médiane ce ceux-ci est d'environ 1,2. A l'opposé, les résultats pour le Buntsandstein sont très dispersés et leur médiane n'est que de - 0,6. Cette valeur médiocre est due à la part importante du réservoir qui est sous couverture et à des profondeurs considérables (comme le montre le second histogramme de l'aquifère du Buntsandstein, reporté en bas à droite de l'illustration).

Illustration 36 : Distribution des potentiels d'exploitation des nappes.

5. Conclusion

La méthodologie adoptée pour élaborer l'atlas des ressources énergétiques de très basse énergie des principaux aquifères lorrains a été présentée dans les parties précédentes. Il s'agit d'une approche multicritère rendue possible par la mise en place d'un système d'informations géographiques pour caractériser les nappes des calcaires du Tithonien, des calcaires de l'Oxfordien, des calcaires du Dogger, des calcaires du Muschelkalk, et des grès du Trias inférieur.

Les paramètres qui ont été pris en compte sont variés. Ils reflètent les caractéristiques hydrodynamiques des aquifères et les caractéristiques qualitatives des nappes qui leur sont associées. Pour certains paramètres, et en particulier pour les débits, l'insuffisance des données disponibles, n'a pas permis de faire un tri systématique de celles-ci, ce qui a parfois entraîné des difficultés pour leur traitement.

Un atlas étant par définition constitué de cartes, une attention particulière a été apportée à la réalisation de la cartographie des paramètres, en veillant à toujours suivre une démarche scientifique consistante. La variabilité spatiale des paramètres a donc été étudiée. Pour la majorité des nappes, des krigeages géostatistiques des paramètres ont été faits.

Toutefois, les résultats sur les débits apportés par l'étude ne sont qu'indicatifs. L'atlas est en effet un outil d'aide à la décision qui donne des orientations sur les potentialités d'exploitation des nappes. Les points suivants doivent notamment être pris en compte puisqu'ils peuvent limiter les précisions de l'analyse variographique et de la qualité des interpolations :

- les formations carbonatées sont hétérogènes (fissurées voire karstifiées), et les données de débit qui ont été collectées le sont aussi ;
- l'estimation des débits ne tient pas compte des interférences des pompages entre eux.

Ainsi, les résultats de l'interpolation des débits pourraient ne pas être représentatifs de la réalité. En tout état de cause, ces résultats ne sauraient constituer une étude de faisabilité d'un projet.

Par ailleurs, l'existence de zones de restriction d'exploitation ou de travaux (cas des périmètres de protection des captages d'alimentation en eau potable par exemple), et la possibilité pour une nappe d'être en déséquilibre (cas de la nappe des grès du Trias inférieur qui est surexploitée), devront être prises en compte dans un projet.

Ces restrictions d'usage étant mentionnées, le travail effectué a permis d'aboutir à la réalisation d'une carte du potentiel d'exploitation par des pompes à chaleur, pour chacune des cinq nappes. Ces documents ont été normés par la même référence, et présentés selon une échelle de résultats unique, afin qu'ils puissent être comparés. L'atlas permet finalement, lorsque plusieurs nappes coexistent, d'orienter le lecteur vers la ressource en eau souterraine la plus intéressante.

6. Glossaire

Anisotropie n. m. Variation des propriétés d'un minéral, d'une roche, ou d'une formation géologique suivant les directions de l'espace.

Affleurer v. Fait d'être visible à la surface de la Terre pour un terrain ou une formation géologique. n. m. *affleurement*.

Cuesta n. f. Relief dû à l'érosion d'une couche dure à pendage modéré, présentant une forte pente là où celle-ci a été tranchée par l'érosion. syn. *côte*.

Débit spécifique n. m. Débit pompé dans un puits rapporté à la hauteur de rabattement dans le puits. symb. Q_s . $[L^2T^1]$.

Discordance n. f. Dépôt sédimentaire sur une formation géologique en partie érodée.

Essai par pompage n. m. Pompage opéré dans un puits avec contrôle de l'évolution du débit pompé et des rabattements pour évaluer les paramètres de l'aquifère sollicité.

Gradient géothermal n.m. Variation de la température des terrains avec leur profondeur. Près de la surface terrestre, il est en moyenne de 3 °C/100 m.

Isohypse n. f. Courbe d'égale altitude.

Karst n. m. Plateau calcaire affecté d'un relief et de cavités souterraines générés par la fracturation, la dissolution et les écoulements souterrains.

Krigeage géostatistique n. m. Méthode d'interpolation basée sur la reproduction de la structure spatiale de la variable régionalisée étudiée.

Omnidirectionnel adj. Ce dit d'un variogramme expérimental calculé selon une direction unique.

Perméabilité n. f. Aptitude d'un milieu à se laisser traverser par un fluide sous l'effet d'un gradient de potentiel. symb. *K*. $[LT^{1}]$.

Porosité n. f. Propriété d'un milieu à comporter des vides. Elle est exprimée quantitativement par le rapport du volume de ces vides au volume total du milieu. symb. *w*. [].

Puissance n. f. Epaisseur d'une couche géologique mesurée perpendiculairement à la stratification.

Rabattement n. m. Diminution de charge hydraulique sous l'effet d'un prélèvement d'eau. symb. s. [L].

Subsidence n. f. Enfoncement progressif, régulier ou saccadé, pendant une assez longue période d'un fond d'un bassin sédimentaire, suite à un amincissement crustal d'origine tectonique.

Transmissivité n. f. Paramètre régissant le débit d'eau qui s'écoule par unité de largeur de la zone saturée d'un aquifère et par unité de gradient hydraulique. symb. *T*. $[L^2T^1]$

Variation latérale de faciès exp. Modification géographique des dépôts sédimentaires d'un même âge avec la modification des conditions de sédimentation.

Variogramme n. m. Outil géostatistique fondamental de l'étude de la structure d'un phénomène régionalisé.

7. Documents utilisés

Bresson G, Maiaux C., de Mautort J., Guillaume M. (1969) – Feuille géologique $n^{\circ}135 a 1/50 000^{e}$ de Verdun.

Castany G., Margat J. (1977) – Dictionnaire français d'hydrogéologie. Editions du BRGM, 249 p., 11 fig.

Chrétien J.C., Verbecq F., Meyer R., Jurain G. (1974) – Feuille géologique n°305 à 1/50 000^e de Rambervillers.

Demassieux L. (1969) – Feuille géologique n°191 à 1/50 000^e de Vaubécourt.

Desplan A., Lejeune J.M. Maiaux C. (1981) – Les possibilités de réalisations géothermiques en Meuse, Etude de faisabilité du projet géothermique de Maizey. Rapport BRGM 81 SGN 372 LOR, 46 p., 4 ann.

Desprez N., Durand M., Jurain G., Minoux G. (1971) – Feuille géologique n°375 à 1/50 000^e de Plombières-les-Bains.

Dormois R., Maubeuge P.L., Minoux G., Goguel J. (1967) – Feuille géologique n°303 à 1/50 000^e de Châtenois.

Drogue C. (1982) – L'aquifère karstique : un domaine perméable original. Le courrier du CNRS, 44, 14, 18-23.

Durand M., Vincent P.-L., Allemmoz M., Guillaume Ch., Vogt J. (1988) – Feuille géologique n°339 à 1/50 000^e d'Epinal.

Fischer C., Nguyen-Thé D. (2005) – Mise à jour de l'inventaire des cavités souterraines du département de la Meuse, Secteur sud-ouest du plateau du Barrois. Rapport BRGM/RP-53628-FR, 25 p., 6 fig., 5 tab.

Flageollet J.C., Le Roux J., Vincent P.L. (1985) – Feuille géologique n°229 à 1/50 000^e de Toul.

Foucault A., Raoult J-F. (2000) – Dictionnaire de géologie. Masson Sciences/Dunod, 5^e édition, 379 p.

Guillaume L. (1959) – Feuille géologique n°196 à 1/50 000^e de Sarre-Union.

Guillaume L. (1960) – Feuille géologique n°165 à 1/50 000^e de Saint-Avold.

Guillaume L., Guillaume M., Limasset J-Cl. (1968) – Feuille géologique n°232 à 1/50 000^e de Sarrebourg.

Hameurt J., Hollinger J., Durand M., Vincent P.L., Flageollet J-C. (1979) – Feuille géologique n°376 à 1/50 000^e de Remiremont.

Hilly J., Allouc J., Marchal Cl., Avias J., Laugier R., Vaucel G., Wild G., Castaing J., Geisler D., Denis J-P., Eschenbrenner V., Minoux G. (1977) – Feuille géologique n°268 à 1/50 000^e de Bayon.

Jaillet S. (1999) – Recul de couverture et karstification dans un karst couvert de bas plateaux : Le Barrois (Lorraine / Champagne – France). Actes du colloque Karst-99.

Laugier R. (1966) – Feuille géologique n°269 à 1/50 000^e de Lunéville.

Laurain M. (1998) – Feuille géologique n°134 à 1/50 000^e de Monthois.

Le Nindre Y.M. (1995) – Synthèse cartographique à 1/250 000^e des réservoirs aquifères du bassin Rhin-Meuse, Rapport final. Rapport BRGM/RR-38618-FR, 36 p., 2 pht.

Le Roux J., Bellorini J.P., Pironon B., Steiner P. (1959) – Feuille géologique n°137 à 1/50 000^e de Briey.

Mabillot A. (1971) – Le Forage d'Eau, Guide pratique. Editions Lavoisier, Paris.

Maiaux C. (1975) – Feuille géologique n°161 à 1/50 000^e de Clermont-en-Argonne.

Marchal Cl., Maréchal B. (1972) – Feuille géologique n°231 à 1/50 000^e de Parroy.

Maubeuge P.L. (1958) – Feuille géologique n°136 à 1/50 000^e d'Etain.

Maubeuge P.L. (1959) – Feuille géologique n°113 à 1/50 000^e de Longwy-Audun-le-Roman.

Maubeuge P.L. (1959) – Feuille géologique n°193 à 1/50 000^e de Pont-à-Mousson.

Maubeuge P. L. (1962) – Feuille géologique n°192 à 1/50 000^e de Saint-Mihiel.

Maubeuge P. L. (1963) – Feuille géologique n°267 à 1/50 000^e de Vézelise.

Maubeuge P. L. (1964) – Feuille géologique n°163 à 1/50 000^e de Chambley.

Maubeuge P.L. (1969) – Feuille géologique n°112 à 1/50 000^e de Longuyon-Gorcy.

Maubeuge P.L. (1969) – Feuille géologique n°162 à $1/50\ 000^{e}$ de Vigneulles-lès-Hattonchâtel.

Maubeuge P.L. (1970) – Feuille géologique n°266 à $1/50\ 000^{e}$ de Gondrecourt-le-Château.

Maubeuge P.L. (1972) – Feuille géologique n°164 à 1/50 000^e de Metz.

Maubeuge P.L. (1973) – Feuille géologique n°194 à 1/50 000^e de Nomeny.

Maubeuge P.L. (1974) – Feuille géologique n°302 à 1/50 000^e de Neufchâteau.

Maubeuge P.L. (1976) – Feuille géologique n°111 à 1/50 000^e de Stenay.

Maubeuge P.L. (1976) – Feuille géologique n°337 à 1/50 000^e de Bourmont.

Maubeuge P.L. (1982) – Feuille géologique n°88 à 1/50 000^e de Montmedy-Francheval.

Maubeuge P.L., Clermonté J., Goguel J. (1965) – Feuille géologique n°228 à 1/50 000^e de Commercy.

Ménillet F. (1979) – Feuille géologique n°233 à 1/50 000^e de Saverne.

Ménillet F., Benecke E.W., Schumacher E., van Werveke L., Geissert F., Leppla A., Thürach H., Konrad H.J., Illies H., Rinck G., Schwoerer P. (1989) – Feuille géologique n°168 à 1/50 000^e de Lembach.

Ménillet F., Durand M., Maïaux C., Lougnon J. (1978) – Feuille géologique n°270 à 1/50 000^e de Cirey-sur-Vezouze.

Ménillet F., Fluck P., Flageollet J.C., Maïaux C. (1978) – Feuille géologique n°341 à 1/50 000^e de Gérardmer.

Minoux G. (1964) – Feuille géologique n°338 à 1/50 000^e de Vittel.

Minoux G. (1978) – Feuille géologique n°304 à 1/50 000^e de Mirecourt.

Minoux G., Théobald N. (1974) – Feuille géologique n°374 à $1/50\ 000^{e}$ de Monthureux-sur-Saône.

Noël Y. (1997) – Modèle de gestion de la nappe des grès du Trias inférieur en Lorraine, Phase 1, Acquisition des données. Rapport BRGM/RR-39228-FR, 62 p., 27 fig., 7 tab., 12 ann.

Ramon S., Zumstein J.F. (1992) – Carte hydrogéologique du bassin Rhin-Meuse à 1/500 000^e et Coupe hydrogéologique schématique à 1/600 000^e. Agence de l'eau Rhin-Meuse, 1000 ex.

Schumacher E., van Werveke L., Haug E., Bücking H., Vogt H., Gross J.J., Schirardin J., Reichelt R., Thévenin A., Pétry F., Ménillet F. (1979) – Feuille géologique n°197 à 1/50 000^e de Bouxwiller.

Stchépinsky V. (1962) – Feuille géologique n°227 à 1/50 000^e de Bar-le-Duc.

Stchépinsky V. (1962) – Feuille géologique n°265 à 1/50 000^e de Joinville.

Stchépinsky V., Lemoine M., Goguel J. (1959) – Feuille géologique n°226 à 1/50 000^e de Saint-Dizier.

Talbot A., Babot Y., Garadi., Masquelier Q. (2002) – Atlas hydrogéologique du bassin Rhin-Meuse. AERM, document ANTEA/SIROM, 128 p.

Théobald N. (1955) – Feuille géologique n°139 à 1/50 000^e de Boulay.

Théobald N. (1967) – Feuille géologique n°167 à 1/50 000^e de Bitche-Walschbronn.

Théobald N., Heintz E., Hillard F. (1959) – Feuille géologique n°138 à 1/50 000^e d'Uckange

Théobald N., Lemoine M., Goguel J. (1959) – Feuille géologique n°91-114 de Thionville-Waldwisse.

Théobald N., Schöner R., Britz K., Manderscheid G. (1955) – Feuille géologique $n^{\circ}140 a 1/50 000^{\circ}$ de Forbach.

Thomas A., Rucquoi D., Le Roux J., Dabonville J.P., Gury M., Florentin L., Nys Cl., Thiebaut J.P., Flageollet J-C., Billoret R., Guillaume Ch., Vincent P. L. (1978) – Feuille géologique n°230 à 1/50 000^e de Nancy.

van Vervecke L., Guillaume L., Meyer G., Schumacher E., Klinkhammer B.F., Heizmann G., Théobald N., Legagneur G., Blanalt J.G., Goguel J. (1967) – Feuille géologique n°166 à 1/50 000^e de Sarreguemines.

Vaute L., Durendeau B. (2005) – Synthèse cartographique du fonctionnement des aquifères karstiques dans le département de la Meuse (hors bassin Rhin-Meuse). Note BRGM LOR05N305, 26 p, 8 fig.

Vincent P.L., Flageollet J.C., Vincent P.L., Durand M., Allemoz M., Vogt J., Delaunay J., Guillaume C., Timbal J. (1985) – Feuille géologique n°340 à 1/50 000^e de Bruyères.

Von Eller J.P., Ménillet F., Hollinger J., Guillaume Ch., Billoret R., Fluck P., Maïaux C. (1975) – Feuille géologique n°306 à 1/50 000^e de Saint-Dié.

Annexe 1

Limites inférieures et supérieures sectorisées des aquifères du Tithonien, de l'Oxfordien, du Dogger, du Muschelkalk et du Trias inférieur

Département	N° de feuille	Tithonien		Remarques
		Couche inférieure	Couche supérieure	
55 Meuse	88			
	111			
	112			
	134	j6b Calcaires du Barrois (Kimméridgien terminal)	n6Sv Sables Verts (Albien inf.)	Les sables verts de l'Albien sont au contact du Tithonien ils pe
	135	j9 Calcaires du Barrois	C1a Sables verts	Les sables verts de l'Albien sont au contact du Tithonien ils pe
	130	ion Calapiron or mtogristalling	nZa Sablaa Varta	Los pobles verts de l'Albien sont au contact du Tithonian ils po
	10		n/a Sables vens	Les sables vens de l'Albien sont au contact du Tithonien ils pe
	102			
	100	i9a Calcaires marneux et lithographiques	i9h Calcaires à débrits. Marnes et lumachelles	l a nappe du Tithonien n'existe que dans la partie inférieure ou
	101			La happe du finicitien rickiste que dans la partie interieure, of
	226	i9a Porlandien inf. Bononien inf. (zone à Cyprina brononiarti et à Pachyceras)	i9a Porlandien inf. Bononien inf. (zone à Cyprina brononiarti et à Pachyceras)	La nappe du Tithonien n'existe que dans la partie inférieure, or
	227	i9a Porlandien inf. Bononien inf. (zone à Cyprina brongniarti et à Pachyceras)	i9a Porlandien inf. Bononien inf. (zone à Cyprina brongniarti et à Pachyceras)	La nappe du Tithonien n'existe que dans la partie inférieure, o
	228	i9a Calcaires du Barrois	i9c Calcaires tachetés et calcaires cariés	Les sables verts ne sont pas au contact de l'aquifère du Tithor
	265	j9a Portlandien inf. (zone à Cyprina brongniarti et à Gravesia)	9a Portlandien inf. (zone à Cyprina brongniarti et à Gravesia)	La nappe du Tithonien n'existe que dans la partie inférieure, or
	266	j9a Calcaires inf. du Barrois (calacaires lithographiques)	9c Calcaires tachetés et calcaires cariés	
54 Meurthe-et-Moselle	112			
	113			
	137			
	163			
	193			
	194			
	229			
	230			
	231			
	267			
	268			
	269			
	270			
57 Moselle	113			
	114			
	137			
	138			
	139			
	140			
	163			
	104			
	100			
	160	1		
	167			
	194			
	196			
	197			
88 Vosges	231			
5	232			
	233			
	270			
	266			
	267			
	269			
	270			
	302			
	303			
	304			
	305			
	306			
	337			
	338			
	339			
	340			
	341			
	374		1	+
	375			
	3/0			

went âtre regroupée dens un mâme equifère
ivent être regroupés dans un même aquilêre
ivent être regroupés dans un même aquifère
ne prend pas en compte sa partie supérieure (i9c et i9d)
ne prend pas en compte sa partie supérieure
ne prend pas en compte sa partie superieure
ne prend pas en compte sa partie supérieure

Département	N° de feuille	Oxfordien		Remargues	
•		Couche inférieure	Couche supérieure	f '	
55 Meuse	88				
	111	i5a Terrain à Chailles	i6b calcaires à Astartes	Les calcaires rocailleux ne sont pas aquifères sur cette carte	
	112	j4c Terrain à chailles Oxfordien inf.	j5 Calcaire corallien Oxfordien moyen		
	134				
	135	j4b Argiles à Chailles	j8a Calcaires rocailleux		
	136	j4 Oxfordien	j7 Séquanien		
	161	j6a Calcaires supérieurs et calcaires "plaquettes"	j7a Calcaires rocailleux à Ptérocères	Il existe un niveau imperméable : j6d Argiles et calcaires argileux à lumachellles (40 m)	
	162	j4b Oxfordien Inf. terrain à chailles	j7 Oxfordien moyen Calcaires à Astartes		
	163				
	191	j7a Séquanien inf. Marno-calcaires	j8a Kimméridgien inf. Calcaires	Il peut exister un niveau imperméable en dessous mais il n'affleure pas	
	192	j4b Oxfordien Chailles	j/ Séquanien	L'ensemble de l'aquifère peut être discontinu	
	226				
	221	i4h Torrain à Chaillea	iz Calasira à Astartas	Les salesires ressilleux pe cent per aquifères sur cette certe	
	220		J7 Calcalle a Astaites	Les calcalles localleux ne sont pas aquileles sur cette calte	
	200	i4h Terrain à Chailles	i7c Calcaires à Astartes sun	Les calcaires rocailleux ne sont pas aquifères sur cette carte	
54 Meurthe-et-Moselle	112				
	113				
	137		1		
	163		1		
	193				
	194				
	229	j4b Chailles oxfordiennes	j5-6 Rauracien-Argovien		
	230				
	231				
	267	j4b Chailles oxfordiennes	j5-6 Rauracien-Argovien		
	268				
	269				
57 Maaalla	270				
57 MOSEIIE	113				
	114				
	138				
	139				
	140				
	163				
	164				
	165				
	166				
	167				
	168				
	194				
	190				
88 Vosges	197 021		+		
00 000900	231				
	233				
	270				
	266	j4b Terrain à Chailles	j7c Calcaires à Astartes sup.	Les calcaires rocailleux ne sont pas aquifères sur cette carte	
	267				
	269				
	270				
	302	j4b Oxfordien Terrain à Chailles	j7c Calcaire à Astartes sup.		
	303				
	304				
	305		 		
	300				
	337				
	339		1		
	340				
	341				
	374				
	375				
	376				

Département	N° de feuille	Dogger		Remarques	
		Couche inférieure	Couche supérieure		
55 Meuse	88	B l8 Minerai de fer oolithique	i2b Dalle d'Etain		
	111	1 i1a Calcaires à polypiers sup.	i2b Dalle d'Etain et Marnes à Rhynchonelles		
	112	16 Minerai de fer oolithiqueToarcien sup	i2c-b2 Dalle d'Etain		
	134				
	134	5			
	130	i1 Baiacion sun	i2e Pathonion sun. Dalle d'Etain		
	150		jze Bathomen sup. Dalle u Etalli		
	10				
	102		ion Dethemism inf. Onillances & Americant memory & Tenshartula alabeta		
	103	lo Aalenien	jza Bathonien inf. Calilasses a Anabacia et marnes a Terepratula globata		
	191				
	192	2			
	226	5			
	227	7			
	228	3			
	265	5			
	266	ð			
54 Meurthe-et-Moselle	112	2 I6 Minerai de fer oolithiqueToarcien sup.	j2c-b2 Dalle d'Etain		
	113	3 I6 Aalénien	j1c2 Bajocien sup. Marnes de Jarnisy, Oolithe de Doncourt, Marnes de Gravelotte		
	137	19 Formation ferrugineuse indifférenciée	j2aC Caillasses à Anabacia	Ne pas prendre j2aM Marnes à Terebratula globa	
	163	3 I6 Aalénien	j1c3 Bajocien sup. Oolithes miliaire sup.		
	193	B 19 Toarcien formation ferrugineuse ("Minette")	i2a Caillasses à Anabacia		
	194	18 Toarcien sup. Minerai de fer oolithique	i1c2 Baiocien sup. Calcaires à Clypeus ploti		
	229	l6 Aalénien	i2a Bathonien inf. Caillasses à Anabacia		
	230	19 Aalénien Minerai de fer "Minette"	i1d Baiocien "oolithe difforme à Clyneus ploti"		
	231				
	25	7 IG Aalénien	i2c.b(2) Calcaires polithiques	Ne pas prendre i2c.b(1) marnes à Phynchonelloi	
	201			Ne pas prendre j20-b(1) mariles a Rifynchonellol	
	200				
	205				
	2/(i de Britaire e Marco de Jacie - Oslithe de Brase de Marco de Ose della		
57 Moselle	113	lo Aalenien	1122 Bajocien sup. Marnes de Jarnisy, Oolithe de Doncourt, Marnes de Gravelotte		
	112	1			
	137	19 Aalénien formation ferrugineuse	j2aC Caillasses à Anabacia	Ne pas prendre j2aM Marnes à Terebratula globa	
	138	3 16 Aalénien	l6 Aalénien	Les autres couches du Dogger n'affleurent pas s	
	139	9			
	140)			
	163	3 I6 Aalénien	j1c3 Bajocien sup. Oolithes miliaires sup.		
	164	1 I6 Toarcien sup.	j1b-a Bajocien moyen et inférieur	Les autres couches n'affleurent pas sur la carte	
	165	5			
	166	6			
	167	7			
	168	3			
	194	1 I8 Toarcien sup. Minerai de fer oolithique	j1c2Bajocien sup. Calcaires à Clypeus ploti		
	196	δ			
	197	7			
88 Vosges	231	1			
· · · · · · · · · · · · · · · · · ·	232	2			
	233	3			
	230				
	210	i2h a Calcaira adithiqua	i2h a Caleaira aolithiana	Los autros couchos du Doggor plafflouront pas s	
	200		j2p-c Calcaire oblitingue	No poo prondro i2o h(1) morpoo à Bhyrobopolloi	
	201		J2C-b(2) Calcalles continques	Ne pas prendre j2c-b(1) mariles a Ritynchonello	
	208				
	270	J Dita h1 Dejecien infractorizas à Delumiers inf	i2h Marna adaaira à adithaa farruginayaaa		
	302		Job Marno-calcaire a contres retrugineuses		
	303	3 lo Aalenien	J2C-D Bathonien sup. et moyen		
	302	+			
	305	0			
		ð		Į	
	337	j1a Bajocien inf.	j2c-b Bathonien moyen et sup.	ļ	
	338	3			
	339	9			
	340				
	341	1			
	374	1			
	375	5			
	376	3			

ta (couche imperméable)
della (imperméable), variation latérale de faciès
ta (couche imperméable) ur cette carte
ur cette carte della (imperméable), variation latérale de faciès

Département	N° de feuille	Muschelkalk	Remarques	
		Couche inférieure	Couche supérieure	
55 Meuse	88	3		
	11			
	112			
	134			
	135	5		
	136			
	161			
	162			
	163			
	191			
	192	2		
	226			
	221			
	228			
	203			
54 Mourtho at Macalla	200			
	112			
	13	7		
	163			
	193			
	194			
	229			
	230			
	231	t5b Muschelkalk sup. Calcaire à Térébratules Calcaire à Cératites et marnes	t6 Lettenkohle Dolomies et marnes	Regrouper les formations calcaires et dolomit
	267			
	268	t5b Muschelkalk sup. Calcaire à Térébratules Calcaire et Marnes à Cératites	t6 Lettenkohle Dolomies et marnes	Prendre la Lettenkohle en entier car pas de d
	269	t5 Muschelkalk sup.	t6 Lettenkohle	Prendre la Lettenkohle en entier car pas de d
	270	t4c Couches Blanches	t5b Calcaires à Ceratite	La Lettenkohle n'auffleure pas
57 Moselle	113	3		
	114	t5a Couches à entroques	t6a Dolomie inf.	
	137	7		
	138	t6a Dolomie inférieure	t6a Dolomie inf.	Les autres couches de la Lettenkohle n'affleu
	139	t5a Couches à entroques	t6a Dolomie inf.	
	140	t5a Calcaire à entroques	t6a Calcaire et dolomie	
	163		the Delemie inf	
	104	toa Calcaire a entroques	toa Dolomie Inf.	
	103	toa Calcaire a entroques	tea Dolomia inférioura	
	16	to Calcaires à entroques	tea Calcaire et delemie	
	168			
	100			
	196	t5a Calcaires à entroques	t6a Dolomie inférieure	
	197	7		
88 Vosaes	23	t5b Muschelkalk sup. Calcaire à Térébratules Calcaire à Cératites et marnes	t6 Lettenkohle Dolomie et marnes	Regrouper les formations calcaires et dolomi
	232	t5a Calcaires à entroques	t6a Dolomie inférieure	
	233			
	270			
	266			
	267	7		
	269			
	270			
	302			
	303	t5c Muschelkalk sup. Dolomie de Vittel	t5c Muschelkalk sup. Dolomie de Vittel	
	304	t5 Muschelkalk sup.	t5 Muschelkalk sup.	La dolomie inf. est confondue avec le toit du
	305	ts Calcaires à Cératites, calcaires à entroques	téa Calcaire dolomitique inférieur	
	306	7		
	331	Ath D. Caushas Disashas	to Delemia blanc entres (Delemia de Vittel)	
	338		tea Lottopkoble inf. (Delemic de Vittel)	1
	335	the coucies didictes	toa Lettenkohle inf. (Dolonitique)	1
	340	i u nuoviicikaik oup. vaivaiico		1
	34	t4c Couches Blanches	t5h Calcaires à Ceratite	Pas de distinction pour la Lettenkoble
	374	t4D Couches blanches	t6a Calcaires dolomitiques inf	
	376			1
			-	-

iques du Musch. Sun et de la Lattankabla
iques du musch. Sup. et de la Letterikuille
istinction entre les couches sur la carte
istinction entre les couches sur la carte
rent pas sur cette carte
iques du Musch, Sun, at da la Lattankabla
iques du Musch. Sup. et de la Lettenkohle
iques du Musch. Sup. et de la Lettenkohle
iques du Musch. Sup. et de la Lettenkohle
iques du Musch. Sup. et de la Lettenkohle
iques du Musch. Sup. et de la Lettenkohle
iques du Musch. Sup. et de la Lettenkohle
iques du Musch. Sup. et de la Lettenkohle
iques du Musch. Sup. et de la Lettenkohle
iques du Musch. Sup. et de la Lettenkohle Muschelkalk
iques du Musch. Sup. et de la Lettenkohle
iques du Musch. Sup. et de la Lettenkohle Muschelkalk
iques du Musch. Sup. et de la Lettenkohle
iques du Musch. Sup. et de la Lettenkohle
iques du Musch. Sup. et de la Lettenkohle Muschelkalk
iques du Musch. Sup. et de la Lettenkohle Muschelkalk
iques du Musch. Sup. et de la Lettenkohle Muschelkalk

Département	Nº de feuille	Grès du Trias inférieur		Remarques	
Departement	in de leulle	Couche inférieure			
55 Meuse	88				
55 Meuse	111				
	111				
	134				
	135				
	136				
	161				
	162				
	163				
	191				
	192				
	226				
	227				
	228				
	265				
	266				
54 Meurthe-et-Moselle	112				
	113				
	137				
	163				
	193				
	194				
	229				
	230				
	267				
	268				
	269	t1a Grès Vosgien	t2-3 Grès coquillier et grès à voltzia		
	270	t1b Grès Vosgien s.s.	t3 Muschelkalk inf. Grès coquillier	Ne pas prendre les couches de Senones (t1a) qui sont imperméables	
57 Moselle	113	· · · · · · · · · · · · · · · · · · ·	·		
	114	t1 Grès vosgien principal	t3 Grès coquillier		
	137				
	138				
	139	t1b Grès vosgien principal	t3a Grès coquillier		
	140	t1a Grès d'Anweiler	t3a Grès coquillier		
	163				
	164				
	165	t1c Grès vosgien	t3a Grès coquillier		
	166	t1c Gres vosgien	t3a Gres coquillier	Alexandra da la color de la	
	167	t1b Gres vosgien interieur	t2b Gres a Voltzia	Ne pas prendre le gres coquillier car l'arglie limite fait un ecran impermeable	
	100				
	194				
	190	t1h Grès vosgien	t2h Grès à Voltzia	Toutes les couches n'affleurent pas sur la carte	
88 Vosges	231				
oo voogoo	232	t1b Grès vosaien inf.	t3a Grès coquillier	Pas d'argile limite en dessous des grès coguillers	
	233	t1b Grès vosgien	t2b Grès à Voltzia	Ne pas prendre les couches de Senones (t1a) qui sont imperméables	
	270	t1b Grès Vosgien s.s.	t3 Muschelkalk inf. Grès coquillier	Ne pas prendre les couches de Senones (t1a) qui sont imperméables	
	266				
	267				
	269	t1a Grès Vosgien	t2-3 Grès coquillier et grès à voltzia		
	270	t1b Grès Vosgien s.s.	t3 Muschelkalk inf. Grès coquillier	Ne pas prendre les couches de Senones (t1a) qui sont imperméables	
	302				
	303				
	304				
	305	t1 Grés vosgien	t2c-3a Grés coquillier, grès à Voltzia	Des disflaurement du teit	
	306	tib Gres vosgien sup.	t∠o Coucnes intermediaires (grés)	Pas o ameurement du toit	
	337	ta Orèn venning	12 Orde et ereiles sources		
	338	ti Gres Vosglen	to Gres et arglies rouges	to regroupé que la Orde à Veltrie dans 10t 0	
	339	the Gree Vosgien	to Gres coquiller	Crès convillior rogravité avec le Crès à Veltaie	
	340	the Gree vosgien	120-3 Grès bigaré inf., ques coquililler	Dies uoyulliller regroupe avec le Gles à VollZia	
	341	ti Grès vosgien	t3 Muschelkalk inf. (grès coguillior)		
	374	t1 Grès vosgien	t2b-3 Grès à Voltzia		
	376	t1b Grès vosgien	t2b Grès à Voltzia		
	570				

Atlas du potentiel géothermique des aquifères lorrains

Annexe 2

Liste de toutes les formations géologiques à prendre en compte dans la modélisation géologique des aquifères par le logiciel Multilayer

N° de la feuille	Nom de la feuille	Aquifère	Unité Lithostratigraphique	Notation carte	Age porté sur la carte		
Toumo		İ	Dalle d'Etain	j2b	Bathonien moyen à supérieur		
			Caillasses à Anabacia	j2a	Bathonien inférieur		
			Oolithe de Doncourt-les-Longuyon	j1b-c	Bajocien supérieur		
			marno-calcaires à Clypeus ploti	j1b-c	Bajocien supérieur		
88	FRANCHEV/AI	Dogger	Oolithe de Jaumont	j1b-c	Bajocien supérieur		
	TRANCHEVAL		Marnes de Longwy	j1b-c	Bajocien supérieur		
			Calcaires à polypiers/Pierre de Dom-le-Mesnil	j1a	Bajocien moyen		
			équivalent des Calcaires à entroques	j1a	Bajocien inférieur à moyen?		
			Minerai de fer oolithique	18	Toarcien supérieur		
		Oxfordien	Calcaire à astartes	j6b	Oxfordien supérieur		
			Calcaires argovo-rauraciens	j6a	Oxfordien supérieur		
			Calcaire marneux d'Ornes/Oolithe ferrugineuse	j5bM/j5bO	Oxfordien moyen		
			Terrain à chailles	j5a	Oxfordien moyen		
111	STENAY		Dalle d'Etain	j2b	Bathonien moyen et supérieur		
			Marnes a rhynchonnelles	;0	Dette enders in férieren		
		Degger	Calilasse a anabacia	jza	Batnonien Interieur		
		Doggei	Oolithe de Journent	1C	Bajocien superieur		
			Morpeo de Lengun	j1b	Bajocien supérieur		
				i1a	Baiagian mayon		
				jia	Oxfordion movon		
		Oxfordien		jo i4e b	Oxfordion infériour		
			Dallo d' Etain	j40-0	Oxfordien intertedi		
				j20-02	Bathonien moyen et supérieur		
				J20-01			
			Marnes à Terebratula diobata	j2a	Bathonien inférieur		
			Oolithe de Doncourt passant latéralement aux				
			Marnes de Jarnisy	i1c2	Bajocien supérieur		
112	LONGUYON- GORCY		Niveau des Clanes	1102			
		Dogger	Oolithe de Jaumont				
			Marnes de Longwy	j1c1	Bajocien supérieur		
			Calcaire à polypiers	j1ba	Bajocien inférieur et moyen		
			Calcaire de Haut-Pont				
			Calcaire d' Ottange				
			Marras missaéas				
			Marries micacees				
			Minerai de fer oolitique	16	Toarcien supérieur		
			Oolithe de Doncourt	j1c			
			Niveau des Clapes		Bajocien supérieur		
			Oolithe de Jaumont		Dajocieri superiedi		
			Marnes de Longwy				
113	LONGWY-AUDUN-	Dogger	Calcaires à polypiers supérieurs				
	LE-ROMAN	20990.		j1b-a			
			Calcaires à polypiers inférieurs		Bajocien moyen et inférieur		
			· · · · · · · · · · · · · · · · · · ·				
			Marnes micacees	14	A = 1.6 = 1 = 1		
				14			
1		Musshalkalk		teb	LettenKonle		
1		WINSCHEINAIK		tEo	Musshalkalk		
114-115	THIONVILLE-		Grès coquillior	10a	Muschelkalk		
114-110	WALDWISSE		Grès à Voltzia	t2h	Ruptcandetoin		
		GTI	Grès intermédiaires	t2p	Buntsandstein		
			Grès vosgien principal	12a	Buntsandstein		
			Sables verts	c1a	Albien		
		Tithonien	Calcaires du Barrois	jq	Tithonien inférieur et moven		
1			Calcaire rocailleux	j7h	Oxfordien supérieur (Séquarien)		
1			Calcaires supérieurs à astartes	j7e	Oxfordien supérieur (Séquarien)		
405			Argiles et calcaires movens et inférieurs	_,			
135	VERDUN	VERDUN Oxfordien	Calcaire sableux à trigonies	j6-5			
1			Calcaires en plaquettes		Argovien-Rauracien		
1			Calcaire récifal à polypiers		-		
1			Faciès glypticien				
					Argiles à chailles et oolite ferrugineuse	j4b	Oxfordien s.s.

N° de la feuille	Nom de la feuille	Aquifère	Unité Lithostratigraphique	Notation carte	Age porté sur la carte				
			?	j7	Séquanien				
		Oxfordien	?	j6	Rauracien				
		Oxforulen	?	j5	Argovien				
			Chailles	j4	Oxfordien				
			Dalle d'Etain	i2a h	Rathonion supériour et moven				
136	FTAIN		Marnes à Rhynchonelloïdella	J2C-D	Bathonien superieur et moyen				
150	ETAIN		Caillasses à Anabacia						
		Dogger	Marnes à Terebratula globata	j2a	Bathonien inférieur				
			Calcaire oolithique						
			Oolithe de Jaumont	j1	Bajocien supérieur				
			Calcaire siliceux						
			Caillasse à Anabacia	i2aC	Bathonien				
			Marnes du Jarnisy						
			Oolithe de Vionville (équivalent de l'Oolithe de	11.10	Delesier				
			Doncourt-Les-Conflans ou Calcaires cannabins de	J102	Bajocien				
			Gravelotte)						
			Oolite de Norroy (équivalent de l'Oolite de Doncourt						
			Les-Longuyon)						
			Marnes de Gravelotte, Calcaires à points ocreux de	j1d1	Bajocien				
137	BRIEY	Dogger	Oolite de Jaumont						
			Marnes de Longway	j1c	Bajocien				
			Calcaires siliceux de l'Orne (équivalent des						
			Calcaires siliceux de l'Offie (equivalent des	j1b-c	Bajocien				
				i1h	Baiocien				
			Calcaire à polypiers	J10	Bajocien				
				i10	Bajocien				
				Jia					
			Marnes de Charennes	10	T : (: A !/ :				
		_	Formation ferrugineuse	19	I oarcien superieur - Aalenien				
138	UCKANGE	Dogger		16	Aalénien				
	00101102	Muschelkalk	Dolomie inférieure	t6a	Lettenkhole				
		Muschelkalk	Dolomies inférieures	t6a	Trias moyen				
			Couches à cératites	t5b	Trias moyen				
			Couches à entroques	t5a	Trias moyen				
			Grès coquillier	t3a	Trias moyen				
130			Grès à Voltzia	t2b	Trias inférieur				
100	DOOLAI		Grès intermédiaires et conglomérat à cornaline	t2a	Trias inférieur				
		GTI	Conglomérat principal	t2P	Trias inférieur				
			Grès vosgien principal	t1c	Trias inférieur				
			Grès vosgien principal	t1b	Trias inférieur				
			Calcaire et dolomie	t6a	Muschelkak (Lettenkhole)				
		Muschelkalk	Calcaire à cératites	t5b	Muschelkak				
			Calcaire à entroques	t5a	Muschelkak				
			Grès coquillier	t3a	Buntsandstein supérieur				
			Grès à Voltzia	t2b	Buntsandstein supérieur				
140	FORDAOU		Arailes et arès lie-de-vin	t2a	Buntsandstein supérieur				
140	FORBACH		Conglomérat à cornaline	t2C	Buntsandstein supérieur				
		GTI	Conglomérat principal (équivalent du Poudingue de	107					
							Saint-Odile)	t2P	Buntsandstein supérieur
			Grès vosgien supérieur	t1c	Buntsandstein moven				
			Grès vosgien inférieur	t1b	Buntsandstein moven				
			Grès d'Annweiler	t1a	Buntsandstein inférieur				
			Sables verts	n7a	Albien				
		THE	Calcaires à débris	i9b2	Portlandien				
		Tithonien	Pierre châline	j9b1	Portlandien				
			Calcaires cryptocristallins	i9a	Portlandien				
			Calcaires rocailleux à ptérocères	i7a	Kimméridgien inférieur				
4.6.1	CLERMONT-EN-		Calcaires supérieurs à astartes	i6e	Séguanien (partie supérieure)				
161	ARGONNE		Calcaires inférieurs à polypiers	j60	Séguanien (partie inférieure)				
			Arailes à Ostrea	i6b	Séguanien (partie inférieure)				
		Oxtordien	Calcaires à trigonies	,					
		1	Calcaires en plaquettes		Oxfordien (Rauracien)				
			Calcaire récifal à polyniers ou corallien	j6a					
			équivalent de la Pierre d'Euville-Lérouville		Oxfordien (Argovien)				
				i7	Oxfordien moven (Séquanion)				
			Calcaire corallian Calcaire de la Croïte Dierre	<u>ر</u>					
				j6-5	Baurasian				
162	HATTONCHÂTEI	Oxfordien	u Euvilie-Lerouville Marpa blancha das Energos	iEo					
	TATIONOTATEL		Oolithe ferrugingues						
				j40 ;⊿⊾	Oxfordion infériour				
		1	remain a chailles	J4D					
N° de la feuille	Nom de la feuille	Aquifère	Unité Lithostratigraphique	Notation carte	Age porté sur la carte				
---------------------	------------------------	-----------------------	--	-------------------	-----------------------------				
			Caillasses à Anabacia	j2a	Bathonien inférieur				
			Marnes à Terebratula globata	, .					
			Supérieure)						
			Marnes de Gravelotte	j1c1	Bajocien supérieur				
100		Desser	Oolithe de Jaumont	, .					
103	CHAMBLET	Dogger	Marnes de Longwy						
			Calcaires à polypiers						
			Calcaires de Haut-Pont	j1b-a	Bajocien moyen et inférieur				
			Calcaires d'Ottange	-					
			Minerai de fer colithique	16	Aalénien				
			Calcaires à polypiers	10	Adenen				
		Deserve	Calcaires de Haut-Pont	j1b-a	Bajocien moven et inférieur				
		Dogger	Calcaires d' Ottange	-					
164	MET7		Toarcien supérieur ferrugineux	16	Toarcien supérieur				
101		Mussbolkalk	Dolomie inférieure	t6a	Lettenkhole				
		WUSCHEIKAIK	Calcaire à cératites	t5b	Muschelkalk supérieur				
			Calcaire à entroques	t5a	Muschelkalk supérieur				
		Muscholkalk	Dolomie inférieure	t6a	Lettenkohle				
		WUSCHEIKAIK	Couches à cératites	t5b	Muschelkalk supérieur				
			Calcaire à entroques	t5a	Muschelkalk supérieur				
165	SAINT-AVOLD		Marnes à myacites et Grès coquillier	t3a	Muschelkalk inférieur				
		CTI	Gres a Voltzia	t2b	I rias inferieur				
		GII	Couches Intermediaires	t2P	Trias inférieur				
			Grès vosgien	t1c	Trias inférieur				
	SARREGUEMINES		Dolomie inférieure	t6a	Lettenkohle				
		Muschelkalk		+5h	Musshalkalk aupériour				
			Couciles à celailles	t5a	Muschelkalk supérieur				
166		GTI	Grès coquillier	t3a	Muschelkalk inférieur				
			Grès à <i>Voltzia</i>	t2b	indeenendar meneda				
			Couches intermédiaires	t2a					
			Conglomérat principal	t2P					
			Grès vosgien	t1c					
		Muschelkalk	Calcaires et dolomies	t6a	Lettenkohle				
		Mussellentait	Couches à cératites	t5b	Muschelkalk supérieur				
		BITCHE- ALSCHBRONN	Calcaire à entroques	t5a	Muschelkalk supérieur				
			Grès à Voltzia: Grès argileux Grès à Voltzia : Grès à meules	t2b	Buntsandstein supérieur				
			Couches intermédiaires : Le banc de brèche dolimitique supérieure	t2a	Buntsandstein supérieur				
167	BITCHE- WALSCHBRONN		Couches intermédiaires : Couches intermédiaires supérieures	t2a	Buntsandstein supérieur				
		GTI	Couches intermédiaires : la zone violette supérieure	t2a	Buntsandstein supérieur				
			Couches intermédiaires : Couches intermédiaires	t2a	Buntsandstein supérieur				
			Conglomérat à cornaline	t2c	Buntsandstein supérieur				
			Conglomérat principal	t2P	Buntsandstein moyen				
			Grès vosgien supérieur	t1c	Buntsandstein moyen				
			Grès vosgien inférieur	t1b	Buntsandstein moyen				
191		Tithonien	Calcaires à débris (équivalent des Calcaires de Domartin)	j9b	Bononien inférieur				
			Calcaires lithographiques	j9a	Bononien inférieur				
	VAUBECOURT		Calcaires	j8a	Kimméridgien inférieur				
		Oxfordien	Calcaires lithographiques et graveleux	j7c	Séquanien supérieur				
			Calcaires oolitiques et lithographiques	j/b ;7-	Sequanien moyen				
			Marno-calcalres	j/a	Sequariien Interieur				
192		Oxfordion	Oolithe de la Mothe	j7	Séquanien				
				:0	Pourosion				
	SAINT WIFIEL	Oxidialen		j0 j5	Argovien				
			Oolithe ferruaineuse	j5 j4c					
			Chailles	j4b	Oxfordien supérieur				
-									

N° de la	Nom de la feuille	Aquifère	Unité Lithostratigraphique	Notation	Age porté sur la carte
feuille		•	Oolithe miliaire supérieure (équivalent de l'Oolithe	carte	
193			de Royaumeix)	j1c3	Bajocien supérieur
			Oolithe terreuse à Clypeus ploti et Parkinsonia	j1c2	Bajocien supérieur
			Oolithe miliaire inférieure (équivalent de l'Oolithe de		
		Dogger	Jaumont)	j1c1	Bajocien supérieur
			Marnes de Longwy		
			Calcaires à polypiers		
			Calcaire a entroques (Roche rouge)	j1b-a	Bajocien moyen et inférieur
			Marnes micacées		
			Minerai de fer oolithique	16	Aalénien
			Calcaire à Clypeus ploti	j1c2	Bajocien supérieur
			Oolite miliaire inférieure (équivalent de l'Oolite de		
			Maxéville et du Bâlin inférieur)	j1c1	Bajocien supérieur
			Marnes de Longwy		
			Calcaires à polypiers supérieurs	i1b2	Baiocien moven
194	NOMENY	Dogger	Oolite cannabine	,	, ,
			Calcaires a polypiers interieurs		Bajocien moyen
			Calcaire d'Ottange (équivalent du Calcaire sableux	li1_i1b1	Aglénien supérieur-Baiocien
			de Have)		Aalemen superieur-bajociem
			Marnes micacées		inférieur
			Minerai de fer oolitique	18	Toarcien supérieur
			Dolomie inférieure	t6a	Lettenkoble
196	SARRE-UNION	Muschelkalk		100	
			Cologies à entroques	15D	Muschelkalk supérieur
227	BAR-LE-DUC	Tithonien	Portlandien inférieur. Bononien inférieur	i9a	Tithonien inférieur
LLI	DATE DOO	Tithonien	Calcaires cariés	jou	Portlandien
			(=calcaires tachetés de Lorraine)	j9c	(= Volgien)
			Oolitho do Puro	i0h	Portlandien
				Jan	(= Volgien)
			Calcaires lithographiques		Portlandien
			(= partie inférieure des Calcaires du Barrois)	j9a	(= Volgien)
			Calcalres illnographiques		
			(- partie interiedre des Calcaires du Barrois)		Portlandien
			(= partie inférieure des Calcaires du Barrois)		(= Volgien)
			Calcaires lithographiques		Portlandien
			(= partie inférieure des Calcaires du Barrois)		(= Volgien)
				j7	Oxfordien supérieur
			Calcaire à Astartes (supérieurs)		à
					Kimméridgien inférieur
				:7	Oxfordien superieur
			Calcaire a Astartes (superieurs)	J7	a Kimmóridaion infóriour
	COMMERCY		Calcaire à Astartes (supérieurs)	i7	à
228				٦.	Kimméridgien inférieur
			Oolithe de la Mothe (=récurrence de l'Oolithe à		Oxfordien supérieur
				j7	à
			Diceras)		Kimméridgien inférieur
					Oxfordien supérieur
		Oxfordien	Calcaire à Astartes (inférieurs)	J7	â Kimmóridaian infériaun
			calcaire à Astartes (inférieurs)	i7	à
				٦.	Kimméridgien inférieur
			Calcaire à Chaux grasse sidérurgique		
			Equivalent de l'Oolithe à Diceras de St. Mihiel	j5-6	
					Oxfordien
			Oolithe ferrugineuse	j4c	
			Terrain à Chailles (Zone à Arisphinctes plicatilis et	i/h	
		I	Cardioceras cordatum)	J 4 0	

N° de la feuille	Nom de la feuille	Aquifère	Unité Lithostratigraphique	Notation carte	Age porté sur la carte
			Zone supérieure à polypiers	j5c	Oxfordien moyen
			Oolithe moyenne	j5b	Oxfordien moyen
		Oxfordien	Zone inférieure à polypiers	j5a	Oxfordien moyen
			Terrains à chailles	i4	Oxfordien inférieur et moven
			(Zone à Mariae à Zone à Plicatilis)	J.	
			Caillasses à Anabacia (Zone à Zig-Zag) (10-15m)	j2a	Bathonien inférieur
			Oolithe à <i>Clypeus ploti</i> , oolithe miliaire supérieure,	14.14.0	Deiesien eine friene
			Polypiers de Husson	J101-2	Bajocien superieur
			Complexe à bapes grécouv		
			Marnes de Gravelotte	j1d1-2	Bajocien supérieur
			Marnes de Longwy Bâlin (ou oolithe miliaire		
			inférieure, ou oolithe de Maxéville)		
			oolithe de Jaumont	j1c	Bajocien supérieur
			(Zones à Subfurcatum ?:Garantiana)		
220	тони		Marnes de Longwy, Bâlin (ou oolithe miliaire		
229	TOUL		inférieure, ou oolithe de Maxéville)	:1.0	Deiesien sunfrisur
			oolithe de Jaumont	JIC	Bajocien superieur
		Dogger	(Zones à Subfurcatum ?;Garantiana)		
					Bajocien moyen
			Calcaires à polypiers supérieurs	i1b2	Baiocien moven
			(Zone à Humphriesianum)	J102	Bajoolon moyon
			Oolithe cannabine		Bajocien moyen
			Calcaires à polypiers inférieurs	j1b1	Bajocien moyen
			(Zone a Humphriesianum)	:10	Deiseise inférieur
			oolithe blanche a Ciypeus angustiporus	jia	Bajocien Inferieur
				Jia	Bajocien interieur
				j1a	Bajocien inférieur
			Marnes micacées	i1a	Bajocien inférieur
			Condomérat du sommet de la formation	jia	Dajocieri interiedi
			ferrugineuse		Aalénien s.s.
			Oolithe difforme à <i>Clypeus ploti</i>	i1d	Baiocien supérieur
			Zone à Subfurcatum? et à Garantiana	1.4	
			Bâlin ou Oolithe miliaire inférieure (Oolithe de	j1c	Deiesien eurofeieur
			Maxéville)		Bajocien superieur
			Marnes de Longwy		
			Calcaires à Polypiers	j1b1	Bajocien moyen
			Oolithe cannabine	j1b2	Bajocien moyen
230	NANCY	Dogger	Oolithe blanche (Oolithe à Clypeus angustiporus)	J1a	Baiocien inférieur
				11.0	Deiseise inférieur
				JIa	Bajocien inférieur
			Marpes micacées	Jia	Bajocien inférieur
			Minerai de fer ou Minette	JIA	Dajocieri interiedi
				19	Toarcien supérieur. Aalénien
			de la zone à Pseudoradiosa à la zone à Concavum		
			Delevaie limite		
			Doiomie limite	tG	Letterkoblo
221	PARROY	ARROY Muschelkalk	Marnes à plantes	10	Letterikulile
201			dolomie inférieure		
			Calcaire à térébratules, Couches à cératites et	t5h	Muschelkalk supérieur
			marnes	100	Maconentait Superiou
			Dolomie inférieure	t6a	Lettenkohle
		Muschelkalk	Couches à cératites	t5b	Muschelkalk supérieur
232		L	Calcaire à entroques	t5a	Muschelkalk supérieur
			Grès à Voltzia	t2b	Trias inférieur: Grés bigarés
	SARREDUURG		Couches internet disings	120	(Buntsandstein)
		GTI	Couches Intermedialles	128	
			Grès vosgien supérieur	121°	Trias inférieur
			Grès vosgien inférieur	t1h	Trias inférieur
				10	Thas interieu
233			Grès à Voltzia	t2b	Buntsandstein supérieur
			Couches intermédiaires	t2a	Buntsandstein supérieur
	SAVERNE	GII	Conglomérat principal (équivaent du Poudinque de	44 -	Dunte endet-in an and
			Saint-Odile)	ιIC	Bunisanustein moyen
			Grès vosgien	t1b	Buntsandstein moyen
265		Tithonien	Calcaires tubuleux, calcaires tachetés, calcaires	iQa	Portlandien inférieur
200		raionien	cariés, oolithe de Bure	JJa	r ordanaion interieur

N° de la feuille	Nom de la feuille	Aquifère	Unité Lithostratigraphique	Notation carte	Age porté sur la carte
			Calcaires cariés	j9c	Portlandien (Volgien)
266		Tithonien	Oolithe de Bure	j9b	Portlandien (Volgien)
			Calcaires inférieurs du Barrois	j9a	Portlandien (Volgien)
			Calcaire à astartes supérieur	j7c	Oxfordien
			Oolithe de la Mothe	j7b	Oxfordien
	LE-CHATEAU	Oxfordien	Calcaire à astartes inférieur	j7a	Oxfordien
			Calcaires à chaux grasse sidérurgique	j5-6	Oxfordien
			Terrain à chailles	j4b	Oxfordien
		Dogger	Calcaire oolithique	j2b-c	Bathonien moyen et supérieur
		Oxfordien		j6	Rauracien
			Chailles oxfordiennes	j4b	
			Marnes à Rhynchonelloidella	j2c-b	Bathonien supérieur et moyen
			Caillasses à Anabacia	j2a	Bathonien inférieur
			Oolithe miliaire supérieure (équivalent de l'Oolithe de Rovaumeix)	j1c3	Bajocien supérieur
			Oolithe terreuse à Clypeus ploti	j1c2	Bajocien supérieur
267	VEZELISE		Oolithe miliaire inférieure	ided	Deiesien sun frieur
		Dogger	Marnes de Longwy	J1C1	Bajocien superieur
			Calcaire à polypiers		
			Oolithe à Clypeus angustiporus		
			Roche rouge	j1b-a	Bajocien moyen et inférieur
			Calcaire sableux de Haye	-	
			Marnes micacées		
			Minerai de fer oolitique	16	Aalénien
			Dolomie et marnes	t6	Lettenkohle
268	BAYON	Muschelkalk	Calcaire à Térébratules, Calcaire et Marnes à	t5b	Muchelkalk supérieur
	LUNEVILLE	Muschelkalk	Cerdines	t6	Lettenkohle
			Calcaire magnésien (Dolomie limite)		
			Marnes à plantes		
			Dolomie inférieure		
			Zone à Ceratites semipartitus	t5	
			Zone à Ceratites nodosus		Muschelkalk supérieur
			Sous-zone à Encriinus liliiformis		
269		E	Grès coquillier	t3	Muschelkalk inférieur
			Argile limite	-	
			Grès argileux	10.1	Dunte en detain aun frierre
		GTI	Grès à <i>Voltzia</i>	t2-1	Buntsandstein superieur
			Couches intermédiaires		1
			Conglomérat principal	t1b	Buntsandstein moyen
		<u> </u>	Grès vosgien	t1a	Buntsandstein moyen
		Marshall, "	Calcaire à cératites	t5b	Muschelkalk supérieur
270		Muschelkalk	Calcaire à entroques	t5a	Muschelkalk supérieur
			Couches blanches	t4c	Muschelkalk moyen
	CIREY-SUR- VEZOUZE	CIREY-SUR- VEZOUZE GTI	Grès coquillier s.l.	t3	Muschelkalk inférieur
			Grès à <i>Voltzia</i>	t2b	Buntsandstein supérieur
			Couches intermédiaires	t2a	Buntsandstein supérieur
			Conglomérat principal (équivalent du Poudingue de Saint-Odile)	t1c	Buntsandstein moyen
			Grès vosgien	t1b	Buntsandstein moyen

N° de la feuille	Nom de la feuille	Aquifère	Unité Lithostratigraphique	Notation carte	Age porté sur la carte
			calcaires à Astartes supérieur	j7c	Oxfordien-Kimméridgien
			Oolithe de la Mothe	j7b	Oxfordien-Kimméridgien
			calcaires à Astartes inférieur	j7a	Oxfordien-Kimméridgien
			Pierre de Dainville		
			facies de l'Oolithe à <i>Diceras</i> et de l'ex Rauracien		
		Oxfordien			
				j5-6	Oxfordien moyen
				,	,
			Calcaires "Argovo-Rauracien" (calcaires coralliens)		
			Zone à Gregoryceras transversarium)		
			I errain a Chailles	j40	Oxfordien
302	NEUFCHATEAU			J30	Callovien superieur
			Minerai à <i>Reineckeia anceps</i>	j3b	Callovien moyen
			Dalle nacrée	j3a	Callovien
			Dalle oolithique (lave)	i2h o	Rathanian mayon at supériour
			Calcaire à Rhynconella decorata	JZD-0	Batilonien moyen et supeneu
		_	Caillasses à Anabacia??		Bathonien inférieur
		Dogger	Calcaires à Anabacia	j1c3	Bajocien supérieur
			Dolitne miliaire superieure	J1C3	Bajocien superieur
			namo calcales de la 2016 a Farkinsollia parkinsoni	j1c2	Bajocien supérieur
			Oolithe miliaire inférieure (Bâlin)	i1c1	Baiocien supérieur
			équivalent des Marnes de Longwy	j1c1	Bajocien supérieur
			Calcaires à Polypiers supérieurs	j1b2	Bajocien moyen
			Calcaires à Polypiers inférieurs	j1a-b1	Bajocien inférieur
	CHATENOIS		"lave"	j2c	Bathonien supérieur et moyen
		Dogger	Marnes à Rhynconelloïdella	j2b	Bathonien supérieur et moyen
			Marnes a <i>Rh varians</i> Coillassos à Apabacia (au Nord)	,	
			Calcaires à Rhyncopella decorata (au SW)	j2a	Bathonien inférieur
			Oolithe miliaire supérieure		
			=Oolithe de Royaumeix	j1c3	Bajocien supérieur
202			(Zone à Parkinsonia schloenbachi)	,	
			Oolithe terreuse à Clypeus ploti	j1c2	Bajocien supérieur
			Oolithe miliaire inférieure (Bâlin)	i1c1	Baiocien supérieur
			Zone à Garantia garanti?	, .	
303			= Marnes à Ostrea acuminata	j1c1	Bajocien supérieur
			Calcaires à Polypiers	i1b	Bajocien moven
			Oolithe cannabine	:46	Deiceien meyen
			"masse inférieure des Polypiers"	JID	Bajocien moyen
			Calcaires à Polypiers	j1b	Bajocien moyen
			Oolithe à <i>Clypeus angustiporus</i>	j1a	Bajocien inférieur
			"Rocne rouge" Calcaire sableux	j1a i1a	Bajocien inférieur
				16	Aalénien
					Lettenkhole
L		Muschelkalk		t5c	Muschelkalk supérieur
			Dolomie de Vittel		
304	MIRECOURT	Muschelkalk		t5	Muschelkalk supérieur
		Muschendik	Couches à ceratites et térébratules		····
			Couches a entroques		
			Dolomie inférieure	t6a	Lettenkohle inférieure
305		Muschelkalk	Calcaire à térébratules		
			Calcaire à cératites	t5	Muschelkalk supérieur
			Calcaire à entroques		
			Grès coquillier	t3a	Muschelkalk inférieur
	RAMBERVILLERS		Grès à <i>Voltzia</i>	t2c	Buntsandstein supérieur
					· · ·
		GTI	Couches intermédiaires	t2b	Buntsandstein supérieur
			Zone limite violette	16	B () () () () () () () () () (
			Conglomérat principal	t2a	Buntsandstein inférieur et moyen
			Grès vosgien	t1	Buntsandstein inférieur et moyen
			Couches intermédiaires	t2b	Buntsandstein supérieur
306	SAINT-DIE	GTI	Conglomérat principal	t2a	Buntsandstein moyen
		I	Grès vosaien supérieur	t1b	Buntsandstein moven

N° de la feuille	Nom de la feuille	Aquifère	Unité Lithostratigraphique	Notation carte	Age porté sur la carte	
icanie			Calcaire à Rhynconella decorata	Guile		
			Dalle oplithique	j2b-c	Bathonien moyen et supérieur	
			Oolithe miliaire supérieure			
			Calegira compact sublithegraphique	j1c3	Bajocien supérieur	
337	BOURMONT	Dogger	Marno calcaires de la zone à Parkinsonia	i1c2	Baiocien sunérieur	
			Calcaires sub-oolithiques plus ou moins marneux	1102	Bajocien Superieur	
			Horizon à <i>Clypeus ploti</i> Oolithe miliaire inférieure (Bâlin)		Bajocien supérieur	
			Marnes de Longwy	:46	Deiesien mersen	
			Calcaires a Polypiers superieurs	j1D i1b	Bajocien moyen	
			Calcaires à Polypiers inférieurs	טון	Bajocieri Illoyeli	
			Calcaires spathiques	j1a	Bajocien inférieur	
			Dolomie de Vittel, équivalente du Calcaire à térébratules	t5c	Muschelkalk supérieur	
		Muschelkalk	Calcaire à cératites	t5b	Muschelkalk supérieur	
338	VITTEI		Calcaire à entroques	t5a	Muschelkalk supérieur	
000	VIIIEL		Couches grises et Couches blanches	t4b	Muschelkalk moyen	
			Grès coquillier (?)	t3	Muschelkalk inférieur	
		GTI	Couches intermédiaires et Grès à Voltzia	t2a-b	Buntsandstein supérieur	
			Conglomérat principal et Grès vosgien	t1	Buntsandstein moyen	
	EPINAL	Muschelkalk	Dolomie inferieure (equivalent de la Dolomie de Vittel)	t6a	Keuper inférieur-Lettenkohle	
			Calcaire à terebratules Calcaire à cératites Calcaire à entroques	t5	Muschelkalk supérieur	
			Couches blanches	t4c	Muschelkalk moyen	
			Grès coquillier	t3	Muschelkalk inférieur	
339			Grès à <i>Voltzia</i>	t2b	Buntsandstein supérieur	
		GTI	Couches intermédiaires	t2a	Buntsandstein supérieur	
			Zone limite violette Conglomérat principal	t1c	Buntsandstein moyen	
			Grès vosgien	t1b	Buntsandstein moyen	
			Dolomie inférieure	t6a	Keuper inférieur-Lettenkohle	
	BRUYERES	Muschelkalk	Calcaire à térébratules Calcaire à cératites	t5	Muschelkalk supérieur	
		L		Calcaire à entroques	10	
			Gres coquillier	t3	Muschelkalk inferieur	
340		BRUYERES GTI	Grès à <i>Voltzia</i>	t2b	Buntsandstein supérieur	
			Couches intermédiaires	t2a	Buntsandstein supérieur	
			Conglomérat principal	t1c	Buntsandstein moyen	
			Gres vosgien	t1b	Buntsandstein moyen	
3/11	GERARDMER	GTI	Couches Intermediaires, gres bigarre	t2a	Buntsandstein superieur	
341	GERARDMER	011	Grès vosgien	t1b	Buntsandstein moyen	
374		Muschelkalk	Couches à cératites	t5b	Muschelkalk supérieur	
			Couches à entroques	t5a	Muschelkalk supérieur	
			Couches blanches	t4c	Muschelkalk moyen	
	MONTHUREUX-		Grès coquillier	t3	Muschelkalk inférieur	
	SUR-SAONE	GTI	Grès à <i>Voltzia</i>	t2b	Buntsandstein supérieur	
			Couches intermédiaires	t2a	Buntsandstein supérieur	
			Zone limite violette	t1	Buntsandstein moyen	
L			Congionieral du gres vosgien			

N° de la feuille	Nom de la feuille	Aquifère	Unité Lithostratigraphique	Notation carte	Age porté sur la carte
			Dolomie inférieure	t6a	Lettenkohle inférieure
		Muschelkalk	Calcaire à cératites Calcaire à entroques	t5	Muschelkalk supérieur
			Couches blanches	t4D	Muschelkalk moyen
375	PLOMBIERES-LES- BAINS	S-LES-	Grès à <i>Voltzia</i>	t2b-3	Buntsandstein supérieur
			Couches intermédiaires	t2a	Buntsandstein supérieur
			Zone limite viloette	44	Dunte en detain meuren
			Conglomerat principal	ti	Buntsandstein moyen
	1		GIES VOSYIEII		

Annexe 3

Etudes géostatistiques sur les débits Réservoirs de l'Oxfordien, du Dogger, du Muschlekalk et du Buntsandstein

Le débit étant un des deux paramètres fondamentaux pour réaliser l'atlas des ressources énergétiques des principaux aquifères lorrains, les graphiques se rapportant aux études géostatistiques des quatre réservoirs aquifères de l'Oxfordien, du Dogger, du Muschelkalk et du Buntsandstein sont présentés dans la présente annexe.

Les variogrammes expérimentaux obtenus ont tous un aspect erratique. Pour les réservoirs du Dogger et du Buntsandstein, les débits correspondants à des zones minières ou au contraire à des zones non minières ont été étudiés séparément. Pour le Muschelkalk, aucune structuration des données de débits n'est apparue.

De manière générale, aucune anisotropie* n'a été appréhendée dans ces études (il y a relativement peu de données de débit qui ont été collectées, et leur nature est très disparate).

Etude géostatistique des débits de l'Oxfordien.

Etude géostatistique des débits du Dogger.

Etude géostatistique des débits du Buntsandstein.

Rappel sur les modèles de variogramme les plus courants :

Centre scientifique et technique 3, avenue Claude-Guillemin BP 6009 45060 – Orléans Cedex 2 – France Tél. : 02 38 64 34 34 **Service géologique régional Lorraine** 1, avenue du Parc de Brabois 54700 – Vandoeuvre-lès-Nancy – France Tél. : 03 83 44 81 49